Projects: Stochastics

Hedging by Sequential Regression in Generalized Discrete Models and the Follmer-Schweizer decomposition

August 3, 2019

Group Members

Sarah Boese, Tracy Cui, Sam Johnston

Supervisors

Gianmarco Molino, Olekisii Mostovyi

Overview

In practice, financial models are not exact — as in any field, modeling based on real data introduces some degree of error. However, we must consider the effect error has on the calculations and assumptions we make on the model.  In complete markets, optimal hedging strategies can be found for derivative securities; for example, the recursive hedging formula introduced in Steven Shreve’s “Stochastic Calculus for Finance I” gives an exact expression in the binomial asset model, and as a result the unique arbitrage-free price can be computed at any time for any derivative security.

In incomplete markets this cannot be accomplished; one possibility for computing optimal hedging strategies is the method of sequential regression.  We considered this in discrete-time; in the (complete) binomial model we showed that the strategy of sequential regression introduced by Follmer and Schweizer  is equivalent to Shreve’s recursive hedging formula, and in the (incomplete) trinomial model we both explicitly computed the optimal hedging strategy predicted by the Follmer-Schweizer decomposition and we showed that the strategy is stable under small perturbations.

Publication

forthcoming

Presentation

Poster

Financial Math: Portfolio Optimization and Dynamic Programming

December 20, 2017

Group Members

Ayelet Amiran, Skylyn Brock, Ryan Craver, Ugonna Ezeaka, Mary Wishart 

Supervisors

Fabrice Baudoin, Berend Coster, Phanuel Mariano

 

Overview

Financial markets have asymmetry of information when it comes to the prices of assets. Some investors have more information about the future prices of assets at some terminal time. However, what is the value of this extra information?

We studied this anticipation in various models of markets in discrete time and found (with proof) the value of this information in general complete and incomplete markets. For special utility functions, which represent a person’s satisfaction, we calculated this information for both binomial (complete) and trinomial (incomplete) models.

Publication

arXiv:1808.03186

Presentation

tba

Poster

PosterFinMath2018

Multiplicative LLN and CLT and their Applications

July 25, 2017

Group Members

Lowen PengAnthony SistiRajeshwari Majumdar

Supervisors

Phanuel Mariano, Masha Gordina, Sasha Teplyaev, Ambar Sengupta, Hugo Panzo

Overview

We study the Law of Large Numbers (LLN) and and Central Limit Theorems (CLT) for products of random matrices. The limit of the multiplicative LLN is called the Lyapunov exponent. We perturb the random matrices with a parameter and we look to find the dependence of the the Lyapunov exponent on this parameter. We also study the variance related to the multiplicative CLT. We prove and conjecture asymptotics of various parameter dependent plots.

Publications — tba

Presentations:

Raji Majumdar and Anthony Sisti, will present posters Applications of Multiplicative LLN and CLT for Random Matrices and Black Scholes using the Central Limit Theorem on Friday, January 12 at the MAA Student Poster Session, and give talks on Saturday, January 13 at the AMS Contributed Paper Session on Research in Applied Mathematics by Undergraduate and Post-Baccalaureate Students.

 

Stochastic Stability of Planar Flows

May 12, 2016

Group Members

Lance Ford, Derek Kielty, Rajeshwari Majumdar, Heather McCain, Dylan O’ConnellREU2015-Stochastics

Supervisors

Joe P ChenFanNy Shum

Overview

We investigated systems of complex-valued ordinary differential equations (ODEs) that blows up in finite time, which we refer to as explosive systems. The goal is to understand for what initial conditions does the system explode and will the addition of noise stabilize it; that is, if we were to perturb the system with an additive Brownian motion, will the system of stochastic differential equation (SDE) still be explosive? In fact, we were able to prove a toy model of the stochastic Burgers’ equation to be ergodic; that is, the SDE is nonexplosive and it has a unique limiting distribution.

Presentation

Poster

Lyapunov Exponents of Multiplicative Stochastic Processes

April 21, 2016

David Wierschen, Becky Simonsen

Group Members

David Wierschen and Becky Simonsen

Overview

This group considered the stability of matrix Lie group valued stochastic differential equations, dXt = AXtdt + BXtdt. Random dynamical systems such as this arise in many applications (e.g., oceanic turbulence, helicopter blade motion, light in random channels, wireless networks) in which stability is of practical and theoretical concern. The stability of the zero solution, Xt = 0, is determined by the top Lyapunov exponent. But in practice, analytic calculations of the Lyapunov exponent are often impossible, so time discrete approximations and simulations are necessary. Oceledet’s famous multiplicative ergodic theorem ensures that the Lyapunov exponent of Xt is almost surely constant. But the Lyapunov exponent of a time discrete approximation is itself a random variable. The mean of this random variable has been studied. The group provided estimates on the variance, distribution and rate of convergence in certain numerical approximation methods. In addition, they expanded on and provided simulations for recent results regarding the top Lyapunov exponent of certain Lie group valued SDEs.