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A Numerical Investigation of Laplacian Eigenmaps

Constructing Eigencoordinates

How to Construct Eigencoordinates from a Set of Points

Consider a set of points. These points are connected if the

distance, d , between them is less than or equal to ε. We can

embed these connections in a Laplacian Matrix defined as

L = D −W
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Constructing Eigencoordinates

How to Construct Eigencoordinates from a Set of Points

W is the adjacency matrix of the graph. Each edge is given a

weight defined by wij .

wij =

1 if |xi − xj | ≤ ε, i ̸= j

0 else
.

This graph is undirected, so wij = wji . Thus,

W = (wij)
n−1
i ,j=0
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Constructing Eigencoordinates

How to Construct Eigencoordinates from a Set of Points

D is the degree matrix where the diagonal elements are row sums

of the adjacency matrix.

Di =
n−1∑
j=0

Wij

5 / 51



A Numerical Investigation of Laplacian Eigenmaps

Constructing Eigencoordinates

How to Construct Eigencoordinates from a Set of Points

Calculate the eigenvalues and eigenvectors of the Laplacian Matrix.

Call each eigenvalue and eigenvector pair λi and vi respectively.

Sort the eigenvalues such that 0 = λ0 < λ1 < λ2 < · · · < λn. We

then select v1 and v2 and plot the two against each other. This

plot is known as the eigenmap or eigencoordinates.
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Evenly Spaced Points

Evenly Spaced Points

We begin by choosing evenly spaced points off the interval [−1, 1].

x0
−1 x1 x2 x3 x4 x5 x6 x7 x8 1

xn−1

Note that we select n points, each a distance δ = 2
n−1 apart from

each other. We also set an ε = kδ where k = 1, . . . , ⌊n−1
2 ⌋.

Depending on the value of n and k that we select, we construct

eigencoordinates based on points that are evenly spaced in the

interval [−1, 1].
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Evenly Spaced Points

Eigencoordinates generated from equally spaced points on

the interval [−1, 1]

Figure 1: In blue: eigencoordinates for n = 1000, k = 1.

Red stars: Chebyshev polynomial of the first kind

8 / 51



A Numerical Investigation of Laplacian Eigenmaps

Arranged According to a Distribution

Evenly Spaced Points Arranged According to a Distribution

Evenly Spaced Points Arranged According to a Distribution

Now take n evenly spaced points with a chosen value for ε.

Then take the points and input them into either the inverse

cumulative distribution function of the Gaussian or the inverse

cumulative distribution function of the exponential distribution.
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Arranged According to a Distribution

Evenly Spaced Points Arranged According to a Distribution

Evenly Spaced Points Arranged According to a Distribution

Inverse CDF of the Gaussian distribution is:
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Arranged According to a Distribution

Evenly Spaced Points Arranged According to a Distribution

Evenly Spaced Points Arranged According to a Distribution

Inverse CDF of exponential distribution is:
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Arranged According to a Distribution

Evenly Spaced Points Arranged According to a Distribution

Eigenvectors for points arranged according to a

Distribution

We normalize the eigenvectors by dividing each eigenvector by the

maximum element of the vector, so that the elements within each

eigenvector range from −1 to 1 or 0 to 1.
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Arranged According to a Distribution

Evenly Spaced Points Arranged According to a Distribution

Eigencoordinates picture generated from n evenly spaced

points selected according to the Gaussian distribution

Figure 2: Evenly spaced points selected according to the Gaussian

Distribution with n = 5000, ε = .1
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Arranged According to a Distribution

Evenly Spaced Points Arranged According to a Distribution

Eigencoordinates picture generated from n evenly spaced

points selected according to the exponential distribution

Figure 3: Evenly spaced points selected according to the Exponential

Distribution with n = 5000, ε = .1
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Arranged According to a Distribution

Uniformly Random Points Arranged According to a Distribution

Eigencoordinates picture generated from n Uniformly

Random Points selected according to the Gaussian

Distribution

Figure 4: Uniformly Random Points arranged according to the Gaussian

distribution with n = 5000, ε = .1
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Arranged According to a Distribution

Uniformly Random Points Arranged According to a Distribution

Eigencoordinates picture generated from n Uniformly

Random Points selected according to the Exponential

Distribution

Figure 5: Uniformly Random Points arranged according to the

exponential distribution with n = 5000, ε = .1
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Random Points from an Interval

Random Points from an Interval

We begin by picking n randomly selected points from a distribution

on a given interval. Distributions we looked at: uniform, gaussian,

and exponential
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Random Points from an Interval

Uniform Distribution

About selecting points from Uniform Dist.

When randomly selecting points from the uniform distribution, we

chose points on the interval [−1, 1].

Conjecture

As n → ∞ and ε → 0, the Laplacian eigencoordinates of uniformly

distributed random points converge to the Chebyshev polynomial.

We start with n = 1000 points and ε = 0.05, and plot the

eigencoordinates against the quadratic Chebyshev polynomial (seen

in Figure 6a).
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Random Points from an Interval

Uniform Distribution

Random Points Sampled directly from Uniform Dist.

(a) n = 1000, ε = 0.05 (b) n = 5000, ε = 0.01

Figure 6: Laplacian eigencoordinates plotted against the Chebyshev

polynomial (blue) T2(x) = 2x2 − 1.
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Random Points from an Interval

Gaussian Distribution

About selecting points from Gaussian Dist.

When randomly selecting points from the Gaussian distribution

(also known as the Normal Distribution), in order to avoid the

situation where outliers cause our graphs to be disconnected, we

removed points outside of the interval [−2, 2].
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Random Points from an Interval

Gaussian Distribution

Random Points Sampled directly from Gaussian Dist.

Figure 7: Eigenmap of normally distributed random points,

n = 5000, ε = 0.08, 5 runs.
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Random Points from an Interval

Gaussian Distribution

What is going on with the Gaussian eigencoordinates?

We expected the eigencoordinates of normally distributed random

points to converge to the Hermite polynomials. However, when

plotting the first and third or fourth eigenvectors, we see that the

eigencoordinates loosely follow the Legendre polynomials.

Question: Is there theory behind this? Could this be happening

perhaps because of our scaling/normalization?
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Random Points from an Interval

Gaussian Distribution

Random Points Sampled directly from Gaussian dist.

compared with polynomial

Figure 8: n = 1000, ε = 0.3, polynomial = 7
6x

2 − 1
6

23 / 51



A Numerical Investigation of Laplacian Eigenmaps

Random Points from an Interval

Gaussian Distribution

Average of the Sum of Squared Errors for Different Values

of Epsilon

Figure 9: n = 3000, ε = .02 to .9, 10 runs
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Random Points from an Interval

Exponential Distribution

About selecting points from the Exponential Dist.

In order to avoid the situation where outliers cause our graphs to

be disconnected, we removed points outside the interval [0, 5].
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Random Points from an Interval

Exponential Distribution

Random Points Sampled directly from Exponential dist.

Figure 10: n = 4000, ε = 0.1
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Points from a Shape

Points from a Square

Point Selection Methodology

1 Define two variables, xi and yi .

2 Assign xi , yi values from [0, 1] with a uniform random

distribution.

3 Define the point pi = (xi , yi ).

4 Complete 1-3 for i = 1, 2, . . . , n.

5 Generate the Laplacian using the following edge weight

formula:

wij =

1 if (xi − xj)
2 + (yi − yj)

2 ≤ ε2, i ̸= j

0 else
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Points from a Shape

Points from a Square

Resulting Eigencoordinates

Figure 11: 2-dimensional eigencoordinates: n = 3000, ε = 0.7.
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Points from a Shape

Points from a Square

Resulting Eigencoordinates

Figure 11: 3-dimensional eigencoordinates: n = 3000, ε = 0.7.
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Points from a Shape

Points from a Torus

Point Selection Methodology

1 Define two variables, xi and yi .

2 Assign xi , yi values from [0, 1] with a uniform random

distribution.

3 Define the point pi = (xi , yi ).
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Points from a Shape

Points from a Torus

Point Selection Methodology

1 Complete 1-3 for i = 1, 2, . . . , n.

2 Generate the Laplacian using the following edge weight

formula:

wij =


1 if (min(|xi − xj |, 1− |xi − xj |))2

+(min(|yi − yj |, 1− |yi − yj |))2 ≤ ε2, i ̸= j

0 else
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Points from a Shape

Points from a Torus

Point Selection Methodology

Figure 12: A plot of the resulting points and connections where n = 1000

and ε = 0.05.
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Points from a Shape

Points from a Torus

Resulting Eigencoordinates

(a) Two-dimensional eigenmap. (b) Three-dimensional eigenmap.

Figure 13: The 2-dimensional and 3-dimensional eigenmaps for a points

sample from a torus where n = 10000 and ε = 0.5

33 / 51



A Numerical Investigation of Laplacian Eigenmaps

Points from a Shape

Points from a Thin Torus

Point Selection Methodology

1 Define two variables, xi and yi .

2 Assign xi values from [0, 1] and yi values from [0, 5] with a

uniform random distribution.

3 Define the point pi = (xi , yi ).
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Points from a Shape

Points from a Thin Torus

Point Selection Methodology

1 Complete 1-3 for i = 1, 2, . . . , n.

2 Generate the Laplacian using the following edge weight

formula:

wij =


1 if (min(|xi − xj |, 1− |xi − xj |))2

+(min(|yi − yj |, 5− |yi − yj |))2 ≤ ε2, i ̸= j

0 else

35 / 51



A Numerical Investigation of Laplacian Eigenmaps

Points from a Shape

Points from a Thin Torus

Resulting Eigencoordinates

(a) 2D eigencoordinates
(b) 3D eigencoordinates

Figure 14: 5000 points uniform randomly chosen from a thin (1× 5)

torus where ε = 0.1
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Points from a Shape

Points from the Sierpinski Gasket

Point Selection Methodology

Define an equilateral triangle on R2.

x

y

0 1 2

1

2

A
B

C

•
q0

•
q1 •

q2
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Points from a Shape

Points from the Sierpinski Gasket

Point Selection Methodology

x

y

0 1 2

1

2

A
B

C

•
q0

•
q1 •

q2

Define a variable X to be uniformly random within [0, 3].

Based on the value of X , define x as follows
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Points from a Shape

Points from the Sierpinski Gasket

Point Selection Methodology

Define a variable X to be uniformly random within [0, 3].

Based on the value of X , define x as follows

x =

X if 0 ≤ X < 2

2X − 4 if 2 ≤ X ≤ 3
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Points from a Shape

Points from the Sierpinski Gasket

Point Selection Methodology

Use x to calculate y and set pi = (x , y) as the seed point.

Define another variable a to be uniform random in [0, 3] and

the set of similarities,

F = {Fi (p) :=
1

2
(p − qi ) + qi | i = 0, 1, 2}

For j = 1, 2, . . .m apply the following function to calculate pm

pi , j =


F0(pi , j − 1) if 0 ≤ a < 1

F1(pi , j − 1) if 1 ≤ a < 2

F2(pi , j − 1) otherwise
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Points from a Shape

Points from the Sierpinski Gasket

Point Selection Methodology

Set pi = pi ,m

Complete these steps i = 1, 2, . . . , n.

Generate the Laplacian using the following edge weight

formula:

wij =

1 if (xi − xj)
2 + (yi − yj)

2 ≤ ε2, i ̸= j

0 else
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Points from a Shape

Points from the Sierpinski Gasket

Resulting Eigencoordinates

(a) Sierpinski Eigenmaps plotted

without any rotation.

(b) Sierpinski Eigenmaps

plotted with rotation through a

linear transformation.

Figure 15: These plots depict 10 runs of the code, plotted over each

other. Each time n = 5000, m = 15, and ε = 0.04.
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Weighted Laplacian

Weighted Laplacian

Now consider a Laplacian with different edge weights that has

previously been investigated by Belkin and Niyogi Also, we get a

variance σ2 that can be changed that we represented as a. Then

we times the variance a by 2 and it becomes 2σ2.
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Weighted Laplacian

Weighted Laplacian

Let wij be defined as

wij =

e
−|xi−xj |2

a if i ̸= j , a > 0

0 else

We write W = (wij)
n−1
i ,j=0 and call it the adjacency matrix.
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Weighted Laplacian

Weighted Laplacian

Now the adjacency matrix, the degree matrix and subsequently the

Laplacian matrix, eigenvalues, and eigenvectors, can be

constructed.
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Weighted Laplacian

Eigenvectors

We normalize the eigenvectors by dividing each eigenvector by the

minimum element of the vector, so that the elements within each

eigenvector range from −1 to 1.
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Weighted Laplacian

Weighted Graphs

We compare the eigencoordinates to Chebyshev polynomials using

best fit curves. Polynomials for the quadratic, cubic, quartic, and

quintic.
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Weighted Laplacian

Weighted Graphs

Figure 16: Best Fit Curve:

y = 2.0036467x2 + 8.0965123 ∗ 10−11x − 1.000014520

Compare with T2(x) = 2x2 − 1
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Weighted Laplacian

Weighted Graphs

Figure 17: Best Fit Curve:

y = 3.977825x3+1.13000164∗10−10x2−2.978068x−2.52833309∗10−11

Compare with T3(x) = 4x3 − 3x
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Weighted Laplacian

Weighted Graphs

Figure 18: Best Fit Curve: y = −8.0288566x4 − 3.2939437 ∗ 10−9x3 +

8.01490096x2 + 1.36692 ∗ 10−10x +−1.00016946

Compare with T4(x) = 8x4 − 8x2 + 1
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Weighted Laplacian

Weighted Graphs

Figure 19: Best Fit Curve: y = 15.7054676x5 − 5.9303838 ∗ 10−8x4 −
19.598658x3 + 4.38873 ∗ 10−8x2 + 4.89162x − 1.713723 ∗ 10−9

Compare with T5(x) = 16x5 − 20x3 + 5x
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