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Graph Laplacian Operators

We define a graph G := {V,E} on [−1, 1] where V is n equally spaced points
{x0 = −1, ..., xn−1 = 1} and (xi, xj) ∈ E if |xi − xj| = δ = 2

n−1 where δ
represents the spacing between any two adjacent points.
Let WG be the adjacency matrix and DG be the degree matrix of G, where

WGi,j
=

{
1, if |xi − xj| = δ, i ̸= j

0, else
DGi,j

=

{∑n−1
m=0WGi,m

, if i = j

0, else
.

Then, the Regular Laplacian matrix is defined by

Lreg := DG −WG.

The Probabilistic Laplacian matrix is defined by

Lprob := D−1
G (DG −WG).

We define graph G′ := {V,E ∪ {x0, xn−1}} from n evenly spaced points on a
circle. The Periodic Laplacian is defined by

Lper := DG′ −WG′.

Lreg =


1 −1 0 · · · 0
1 −2 1 · · · 0
... ... . . . . . . ...
0 0 · · · −1 1

 ,Lprob =


1 −1 0 · · · 0

−1
2 1 −1

2 · · · 0
... ... . . . . . . ...
0 0 · · · −1 1

 , Lper =


2 −1 0 · · · −1
1 −2 1 · · · 0
... ... . . . . . . ...
−1 0 · · · −1 2



Defining Eigen-Coordinates

Define the eigen-coordinates as a map Φv,w : {xi}n−1
0 → R2 such that

Φv,w(xi) := (v(xi), w(xi)) ∈ R2.

Let (v, w) be a set containing all the coordinates formed by two eigenfunctions

{(v(x), w(x)) | x ∈ {xi}n−1
0 }.

Suppose L is a graph Laplacian of any kind. Sort its eigenvalues such that 0 =
λ0 ≤ λ1 ≤ λ2 ≤ . . .. Our objective is to investigate the eigen-coordinates (v1, vℓ).

Fig. 1: From left to right, the images are eigenmaps of (v1, v2), (v1, v3), and (v1, v4) respectively.

Finding Eigenvalues and Eigenfunctions

Lemma. Let L be a graph Laplacian matrix. If the middle n− 2 rows are of the form

r


−1 2 −1 0 . . . . . . 0
0 −1 2 −1 0 . . . 0
... . . . ...
0 . . . . . . 0 −1 2 −1

 , r ∈ R

then Aeiπαx +Be−iπαx is an eigenvector, its corresponding eigenvalue is 2r(1− cos(παδ)).

Theorem. Eigenvalues of Lreg are of the form λ = 2(1− cos(παδ)).

Theorem. Eigenvectors of Lreg are of the form f (x) = cos(παx) (with c even) or sin(παx)
(with c odd) where α = c

δ+2 and c ∈ Z.

Proof. Considering the endpoints j = 0 and j = n− 1, we have:

Lf (−1) = Aeiπα(−1) +Be−iπα(−1) − (Aeiπα(−1+δ) +Be−iπα(−1+δ))

Lf (1) = Aeiπα(1) +Be−iπα(1) − (Aeiπα(1−δ) +Be−iπα(1−δ))

We need Lf (−1) = λf (−1) and Lf (1) = λf (1). By setting up the system of equations:

e−iπα(e−iπαδ − 1)

[
1 −eiπα(2+δ)

−eiπα(2+δ) 1

] [
A
B

]
=

[
0
0

]

For
[
A
B

]
to be non-trivial (i.e., not the zero vector), the matrix M =

[
1 −eiπα(2+δ)

−eiπα(2+δ) 1

]
must be singular. Thus, we can find α when det(M) = 0, leading to α = c

δ+2, where c ∈ Z.
Upon plugging α into M, we find that A = (−1)cB. Normalizing the solution, we obtain
f (x) = cos(παx) if c is even and sin(παx) if c is odd.

Theorem. Eigenvalues of Lprob are of the form λ = 1− cos(παδ) and the eigenfunctions are
of the form cos(παx) (with c even) or sin(παx) (with c odd) where α = c

2, c ∈ Z.

Theorem. Eigenvalues of Lper are of the form λ = 2(1−cos(παδ)) and the eigenfunctions are
of the form eiπαx where α ∈ {0, 1, . . . , n− 1}. When n is even, the eigenvalues are exactly
λ(0), λ(1), . . . , λ(n2). When n is odd, the eigenvalues are exactly λ(0), λ(1), . . . , λ(n−1

2 ).

Correlation to Chebyshev Polynomials

Definition. The Chebyshev Polynomials of the first kind are defined by Tℓ(cos(θ)) = cos(ℓθ).

We want to investigate the error, E(x), between our eigen-coordinates (v1, vℓ) and the
Chebyshev polynomial Tℓ:

E(x) = vℓ(x)− Tℓ(v1(x)).

Theorem. The Chebyshev polynomials of sin(y)

Tℓ(sin(y)) =
i−ℓ

2
(eiℓy + (−1)ℓe−iℓy).

We illustrate with the following examples.

T0(sin(y)) = 1, T1(sin(y)) = sin(y), T2(sin(y)) = − cos(2y)

T3(sin(y)) = − sin(3y), T4(sin(y)) = cos(4y), T5(sin(y)) = sin(5y).

Corollary. E(x) = vℓ(x) − Tℓ(v1(x)) = 0 for Lreg and Lprob. This implies the eigen-
coordinates (v1, vℓ) for Lreg and Lprob are exactly Chebyshev polynomials.

Robin Problems on [−1,1]

Definition. Suppose u is an eigenfunction of the Laplacian Ln→∞,k=1 with cor-
responding eigenvalue λ. The Robin Boundary Conditions are{

u′′ = −λu on (−1, 1)

∂nu = ρu at x = ±1

where ∂n is the outward normal derivative at x = ±1.

Solving the general Robin Boundary Condition, we have

Definition. The Robin Boundary Conditions for the Probabilistic Laplacian are{
Lprobu = −λu at x ∈ (−1, 1)

Lprobu = σu at x = ±1
.

Solving the Robin boundary conditions for Lprob, we have limn→∞ σ = 0, which
implies that the eigen-coordinates for the Lprob are the Chebyshev polynomials
of the first kind, Tn(x).

Corollary. The eigen-coordinates for the Lreg are the Chebyshev polynomials of
the first kind.

We also show the convergence of the Discrete Robin Problem for Lreg to the
Continuous Robin Problem.

Further Directions

• Approximation of eigen-coordinates from random points on [−1, 1], the half
sphere S2, the Sierpinski Gasket, and other distributions.
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