COMPARING THE LAPLACIAN WITH AVERAGING OPERATOR
UCONN MATH REU 2023

1. ANALYTIC APPROACH

Lemma 1. The difference between the probabilistic Laplacian and the averaging operator applied to a
continuous function f on equally spaced points on [—1,1] is bounded. As the number of points goes to

infinity, the difference goes to 0.

Proof Let x € [—1,1]. Let n be a positive integer. Fix n points equally spaced on [—1,1], denoted
{z;}j=9- Set ¢ as the difference between these points. Define B(z,¢) = (z —e,2 +¢) N[-1,1] — {z}, and
B(%E) = B(z,e) N {;}2,
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Similarly,
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Taking the difference,
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Now, we want to divide B(x,e) into #B(x,¢e) pieces {Ig}#B @e)=1 of equal length ;féf;i‘) Using this
notation,
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By the MVT, there is some point ¢; in each I, with ¢, = TB?;: f I, . Let J be the index of the

first x; € B(z,¢), that is, ming ep(z¢)j = J. Observe that for z € I, ‘.’L'J+f — z| < 30. Thus

#B(ze)—1
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Since all points chosen are evenly spaced, as n goes to infinity, § goes to 0. Thus

’ﬁn,sf(w) - Esf(x)‘ < sup \f(x]) - f(z)’ —0

z;€B(z,e),|xj—2|<3

2. REVISITING THE TAYLOR SERIES

Refer to Theorem 1.1. Because we are working in an arbitrary metric space X, there is no guarantee of
the existence of addition or multiplication in X, and thus we cannot form the derivatives necessary for a

Taylor series in X.

3. CONVERGENCE IN [-1,1]

Fix e € (0,1). For f on [—1,1], define a function f on [-1 —¢,1+ €] by

f(z) z€[-1,1]
(3.1) f@)=3f2-2) xe(,1+¢
f(—=2—2) ze[-1—¢-1)

Lemma 2. If f € C?, i.e. if both f' and f" both exist and are both continuous, and f'(1) = f'(-1) =
then f € C2.

Proof. Tt is sufficient to check that f, f’, f” are continuous at +1. Begin by having

fl@)=f2-2) = fll@)=f(2-2)-(-1) < f(2)=f'"2-2)-(1)
Applying a limit,

lim f(y)= lim f2—y)Let z2=2—ysoy — 17 = 21",
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lim f(y) = lim /(2 =9) = lim f'(:)= (1) v

y—1+

- fecz

Now take n uniformly spaced points on [—1,1]. Define

1

Lof(@) = 5

T+e€
|t = fody, v e 1,11
Givenn € N, let z; = -1+ % and k = |en|. Define
1
£n,5f(1‘) = -

Lemma 3. Recall from a previous lemma that |L.f(z) — Ly f(2)| < w(f; 255).

Theorem 3.1. For fized € > 0, if f is continuous then L, .f — L.f. Moreover, if f is a-Holder, then
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1£nef (@) = Lef(@)lloc < Ma(—
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For convenience in the following Lemma, we note that

6 1 1 M,, 6
1 (@) = Lof@)loe € Mal—20) 4= || 5L f(2) — Lef @)l < (2
Lemma 4. If f € C?[-1,1] then
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Proof. Recall from Lemma 2 that since f'(1) = f'(—1) =0, f is sufficiently smooth so that we may look

at the Taylor series. If € [—1, 1] then take x < min(|z — 1|, |z + 1|). Consider the Taylor expansion of

f7 ~

fw) = F@) + Pty -0+ Ty -0 1oy - 2P
So, -
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x+e ~ N z+e e z+e
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Sett=y—=x 3
=—f(x) /E tdt — fHQ(x) /E t2dt + /6 t2dt - o(€®)

- ~ 63 €
— P 0= @G+ [ Pato@)

Now to recreate our averaging operator, divide both sides by 2e.

zte _ 5 £1r 2 €
[ = fay = -0 [ o
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Observe that the following inequality holds;

c1r 2 1 € 2
oty + D% < L[ o) = o
So, i
" 2
|5 Lef(x) + / éx)| S%w)(l):Oase—)O
1 1
tim L. (@) =~ ﬁ(m)'
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