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Abstract
The Lyapunov exponent is the exponential growth rate of the operator norm of the partial products
of a sequence of independent and identically distributed random matrices. It usually cannot be
computed explicitly from the distribution of the matrices. Furstenberg and Kesten (1960) and Le
Page (1982) found analogues to the Law of Large Numbers and Central Limit Theorem, respec-
tively, for the norm of the partial products of a sequence of such random matrices. We use these
analogues to efficiently compute the Lyapunov exponent for several random matrix models and
numerically estimate the corresponding variances. For random matrices of order 2, with inde-
pendent components distributed as Bernoulli

(
1
2

)
, we obtain analytic estimates for the Lyapunov

exponent in terms of a limit involving Fibonacci-like sequences.

Introduction
• A Lyapunov exponent is a characterizing quantity that appears in the study of measure-

preserving dynamical systems.

• We focus on this quantity in the context of products of random matrices.

Definition (Lyapunov exponent)
Let Y1, Y2, . . . be i.i.d. GL(d,R)-valued random matrices and Sn =

∏n
i=1 Yi. The Lyapunov

exponent, λ, corresponding to the distribution of Y1 is given by

λ = lim
n→∞

1

n
E [log ‖Sn‖] .

Theorem (Analogue to Law of Large Numbers) [Furstenberg and Kesten]
Let Y1, Y2, . . . be i.i.d. GL(d,R)-valued random matrices such that E[log+ ‖Y1‖] < ∞ and
Sn =

∏n
i=1 Yi. Then,

λ = lim
n→∞

1

n
log ‖Sn‖

almost surely.

Theorem (Furstenberg’s Theorem)
Let Y1, Y2, . . . be i.i.d. GL(2,R)-valued random matrices with common distribution µ and let λ
be the associated Lyapunov exponent. Then there exists a random variable X with distribution ν
such that ∫

P2

∫
GL(2,R)

φ(Y ·X) dµ(Y ) dν(X) =

∫
P2
φ(X) dν(X)

for any bounded, measurable φ. In particular, Y1 ·X is distributed the same as X , which we write
as Y1 ·X ∼ X . Moreover, we have that λ > 0 almost surely, and

λ = E[logX ].

Theorem (Analogue to Central Limit Theorem) [Le Page]
Let Y1, Y2, . . . be i.i.d. GL(2,R)-valued random matrices and Sn =

∏n
i=1 Yi. For any x ∈ P2,

there exists a Gaussian random variable Z with mean 0 and variance a2 such that

1√
n

(log ‖Snx̄‖ − nλ)→ Z and
1√
n

(log ‖Sn‖ − nλ)→ Z.

Random Matrix Models

Bernoulli
(
1
2

)
We consider the random matrix

Yi =

(
εi 1
1 0

)
,

where εi ∼ Bernoulli
(

1
2

)
. The invariant distribution is of the form

X ∼ 1

X
+ εi.

We show that

λ = E [logX ] =
1

6
E [log (2X + 1)]

=
1

14
E [log (3X + 2) (X + 2)]

=
1

32
E [log (5X + 3) (3X + 1) (2X + 3) (2X + 1)]

= . . ..

We find that the coefficient pairs in these equalities take the form (akn, b
k
n), where n and k indicate

a coefficient’s position. Calculating the products of the pair sums,

n = 0 (2, 1) 7→ 3

n = 1 (3, 2) (1, 2) 7→ 5 · 3 = 15

n = 2 (5, 3) (3, 1) (2, 3) (2, 1) 7→ 8 · 4 · 5 · 3 = 480

n = 3 (8, 5) (4, 3) (5, 2) (3, 2) (3, 5) (1, 3) (2, 1) (2, 3) 7→ 13 · 7 · 7 · 5 · 8 · 4 · 3 · 5 = 1528800

n = 4 (13, 8) (7, 4) (7, 5) (5, 3) (8, 3) (4, 1) (3, 2) (5, 2)

(5, 8) (3, 4) (2, 5) (2, 3) (5, 3) (3, 1) (1, 2) (3, 2)

7→ 59668697090000

· · · · · · ,

we can calculate our object of interest, cn, with the following:

cn =

2n∏
k=1

(
akn + bkn

)
= cn−1

2n−1∏
k=1

(
akn + bkn

)
=

2n∏
k=1

akn+1.

Theorem (Obtaining the Lyapunov exponent)
Let

pn =
log cn

(n + 7) 2n
≤ E [logX ] ≤ log cn

(n + 4) 2n
= qn.

Then,
pn, qn→ E [logX ] = λ.

Results

n qn pn qn − pn
1 0.2708 0.1693 0.1015
2 0.2572 0.1715 0.0857
3 0.2543 0.1780 0.0763
4 0.2478 0.1802 0.0676
5 0.2454 0.1841 0.0613
6 0.2419 0.1860 0.0559
7 0.2401 0.1886 0.0515
8 0.2378 0.1902 0.0476
9 0.2364 0.1920 0.0444

10 0.2348 0.1934 0.0414

We expect that λ ≈ 0.2165.

Cauchy with a parameter
Our ξ-Cauchy model is based on the random matrix

Y =

(
ξε −1
1 0

)
,

where ε ∼ Cauchy(0, 1) and ξ ∈ R. For this model, we can use the invariant distribution,

X ∼ − 1

X
+ ξε,

to obtain an explicit formula for the Lyapunov exponent in terms of the parameter of interest, ξ.

Proposition In this model, the Lyapunov exponent is of the form

λ(ξ) = log

(
ξ +

√
ξ2 + 4

2

)
.
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(a) λ (ξ) with ξ ∈ [−20, 20]
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(b) λ (ξ) with ξ ∈ [−1, 1]

Simulating the Variance of λ (ξ)

1. Choose an interval [a, b] as the range of ξ. Divide this interval into sub-intervals of length k.
Let ξ be of the form a + jk for j = 0, 1, . . . , b−ak − 1.

2. Choose a unit vector x.

3. For each ξ, simulate

L(ξ) =

∑n
i=1 log ‖Six‖ − nλ(ξ)√

n

and store the result in a data vector of length b−a
k .

4. Repeat Step 3 anm number of times to obtain am× b−ak matrix, where the jth column contains
all of the L(ξ) corresponding to ξj.

5. Calculate the variance of each column of the matrix.
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(c) Variance with ξ ∈ [−20, 20]
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(d) Variance with ξ ∈ [−1, 1]


