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Abstract Random Matrix Models
. | , Cauchy with a parameter
The Lyapunov exponent is the exponential growth rate of the operator norm of the partial products Bernoulli (l)
of a sequence of independent and identically distributed random matrices. It usually cannot be . 2 | Our £-Cauchy model 1s based on the random matrix
computed explicitly from the distribution of the matrices. Furstenberg and Kesten (1960) and Le We consider the random matrix -
Page (1982) found analogues to the Law of Large Numbers and Central Limit Theorem, respec- Y, = ( 61@ 0 > : Y = (& -1 > ,
tively, for the norm of the partial products of a sequence of such random matrices. We use these 10
analog}les to efﬁciently compute the .Lyapur.lov exponent for several r.andom matrix moFlels and where €; ~ Bernoulli (%) The invariant distribution is of the form where € ~ Cauchy(0, 1) and ¢ € R. For this model, we can use the invariant distribution,
numerically estimate the corresponding variances. For random matrices of order 2, with inde-
pendent components distributed as Bernoulli (%), we obtain analytic estimates for the Lyapunov X ~ i + €. X ~ _i + e
exponent 1n terms of a limit involving Fibonacci-like sequences. A
We show that to obtain an explicit formula for the Lyapunov exponent in terms of the parameter of interest, &.
. 1
Introduction A= Ellog X] = élE log (2X + 1) Proposition In this model, the Lyapunov exponent is of the form
e A Lyapunov exponent is a characterizing quantity that appears in the study of measure- - QE log (3X +2) (X +2)] £+ /€2 +4
' ical : 1 AE) =1lo .
preserving dynamical systems — —Eflog (5X +3) (3X + 1) (2X +3) (2X + 1] €) g 5
e We focus on this quantity in the context of products of random matrices. 32
B 3 0.501
Definition (Lyapunov exponent) We find that the coefficient pairs in these equalities take the form (afii, bfii), where n and k indicate N
Let Y7,Ys,... be ii.d. GL(d,R)-valued random matrices and S,, = ?:1 Y;. The Lyapunov a coefficient’s position. Calculating the products of the pair sums, 0.25-
exponent, A\, corresponding to the distribution of Y7 is given by 0 2.1) . g
n = : 0 ~  0.00
1 _ _ < >
A= lim ~E [log ||Snl]. n=1 132, >H5 3=15 1
n—oon n=2 (53)(3,1)(2,3)(2,1) — 8-4-5-3 =480 . -0.251
n=3 (85)(4,3)(52)(3,2)(3,5)(1,3)(2,1)(2,3) — 13-7-7-5-8-4-3-5 = 1528800 .
Theorem (Analogue to Law of Large Numbers) [Furstenberg and Kesten] n=4 (13,8)(7,4)(7,5)(5,3)(8,3)(4,1)(3,2) (5, 2) 30 10 0 10 20 @ Ol — — — —
Let Y1,Y5,... be i.i.d. GL(d,R)-valued random matrices such that E[log™ |[|Y}]|]] < oo and (5,8) (3,4)(2,5)(2,3)(5,3)(3,1)(1,2) (3,2) 3 ;
Sy = [Ti=1 Yi- Then, 1 — 5966869709000 (@) A(€) with € € [~20,20) (b) A(€) with € € [~1,1]
A= lim ~log || S| ,
n—eon - et of e Simulating the Variance of \ (&)
almost surely. we can cajeulate our object of nterest, ¢, with the foflowing: 1. Choose an interval |a, b] as the range of £. Divide this interval into sub-intervals of length k.
on ' L b—a _
Theorem (Furstenberg’s Theorem) L H (a N bk) . H (a . bk> Let { be of th.e forma + jkfor j =0,1,..., % '
Let Y1, Y5, ... be iid. GL(2,R)-valued random matrices with common distribution x and let A " n-l i ”H' 2. Choose a unit vector .
be the associated Lyapunov exponent. Then there exists a random variable X with distribution v a 3. For each &, simulate
such that Eheorem (Obtaining the Lyapunov exponent) L(€) > it log || S;x|| — nA(§)
Lo oy X)du)an(x) = [ o(x)av(x) o og o jog ¢ Vi
P> JGL(2R) Pn = < Ellog X| < = qn. - b—a
. . (n+7)2" — ~(n+4)2n and store the result in a data vector of length =—
for any bounded, measurable ¢. In particular, Y7 - X 1s distributed the same as X, which we write
as Y] - X ~ X. Moreover, we have that A\ > 0 almost surely, and Then, 4. Repeat Step 3 an m number of times to obtain a m X b— I ¢ matrix, where the ;' h ¢olumn contains
P qn — Ellog X] = A. all of the L() corresponding to &;.
A = Ellog X|. 5. Calculate the variance of each column of the matrix.
Results
Theorem (Analogue to Central Limit Theorem) [Le Page] n.| qn Dn | Qn — Pn 23] 1.001
Let Y7,Y5,... be i.i.d. GL(2,R)-valued random matrices and S, = [/, Y;. For any = € P2, 1 10.27080.1693 | 0.1015 2.0]
there exists a Gaussian random variable Z with mean 0 and variance a* such that 2 10.2572 0.1715 0.0857 - o
| | 3 10.2543/0.1780  0.0763 < 2
NG (log || Spz|| — nA) — Z and NG (log || Sp|| — nA) — Z. 4 10.247810.1802 | 0.0676 S 10 S
510.245410.1841 0.0613 We expect that A ~ 0.2165. . 005 ]
6 10.2419/0.1860 0.0559
7 10.2401 0.1886| 0.0515 0-0'_20 — : - - 0.00] | . | |
8 10.23780.1902 | 0.0476 g o o Y e +0
9 10.2364 0.1920 0.0444 Vo " 20 o0 D " .
10 02348 0.1934 0.0414 (c¢) Variance with £ € [—20, 20] (d) Variance with £ € [—1, 1]




