Representations of Indifference Prices on a Finite Probability Space

Jason Freitas and Joshua Huang

University of Connecticut

Recall

Intuition of Utility Maximization

The idea of utility maximization is to find an investment strategy that maximizes the expected utility under some fixed initial portfolio wealth.

Recall

Intuition of Utility Maximization

The idea of utility maximization is to find an investment strategy that maximizes the expected utility under some fixed initial portfolio wealth.

Recall

A derivative security pays some amount at expiry depending on the value of its underlying asset. An example is a call option.

How can we price derivative securities??

Replication pricing vs Indifference pricing

Recall

Under complete markets, derivative securities are replicable so we show the unique no-arbitrage price of our derivative security is the risk-neutral expectation of the derivative security's payoff. But this isn't the case for incomplete markets. What now?

Replication pricing vs Indifference pricing

Recall

Under complete markets, derivative securities are replicable so we show the unique no-arbitrage price of our derivative security is the risk-neutral expectation of the derivative security's payoff. But this isn't the case for incomplete markets. What now?

Intuition of Indifference Pricing

An indifference price is a price at which the investor gets the same expected utility level by trading a derivative security as he would if he chooses not to trade the derivative security.

Mathematical representation of indifference pricing

Recall

We defined the value function:

$$
u(x)=\sup _{X_{T} \in C(x)} E^{\mathbb{P}}\left[U\left(X_{T}\right)\right]
$$

Mathematical representation of indifference pricing

Recall

We defined the value function:

$$
u(x)=\sup _{X_{T} \in C(x)} E^{\mathbb{P}}\left[U\left(X_{T}\right)\right]
$$

New value function
We will define a new value function V that takes into account the number of derivative security contracts we want to take part in:

$$
V(x-q \Pi, q)=\sup _{X_{T} \in C(x-q \Pi)} E^{\mathbb{P}}\left[U\left(X_{T}+q f\right)\right] \text { for some } q \in \mathbb{R}
$$

Mathematical representation of indifference pricing

Recall

We defined the value function:

$$
u(x)=\sup _{X_{T} \in C(x)} E^{\mathbb{P}}\left[U\left(X_{T}\right)\right]
$$

New value function
We will define a new value function V that takes into account the number of derivative security contracts we want to take part in:

$$
V(x-q \Pi, q)=\sup _{X_{T} \in C(x-q \Pi)} E^{\mathbb{P}}\left[U\left(X_{T}+q f\right)\right] \text { for some } q \in \mathbb{R}
$$

We represent the indifference price Π of a derivative security when the following is true:

$$
V(x-q \Pi, q)=V(x, 0)=u(x)
$$

Indifference Price: Main Result

Theorem [F., H., Mostovyi - '23]

Let $x \in \operatorname{dom}(u)$ be fixed and interest rate $r=0$. Then for every derivative security f, the set of indifference prices at x is a singleton and with $y=u^{\prime}(x)$, we have:

$$
\Pi(x)=\mathbb{E}^{\mathbb{P}}\left[\frac{\hat{Y}_{T}(y)}{y} f\right]=\mathbb{E}^{\hat{\mathbb{Q}}(y)}[f]
$$

Where $\frac{d \hat{\mathbb{Q}}}{d \mathbb{P}}=\frac{\hat{Y}_{T}(y)}{y}$ and $\hat{\mathbb{Q}}$ is the dual optimal martingale measure from the utility maximization problem.

Proving Π is an indifference price

Check that $\Pi(x)=\mathbb{E}^{\mathbb{P}}\left[\frac{\hat{\underline{Y}}_{T}(y)}{y} f\right]=\mathbb{E}^{\hat{\mathbb{Q}}(y)}[f]$ is an indifference price:

Proving Π is an indifference price

Check that $\Pi(x)=\mathbb{E}^{\mathbb{P}}\left[\frac{\hat{\underline{Y}}_{T}(y)}{y} f\right]=\mathbb{E}^{\hat{\mathbb{Q}}(y)}[f]$ is an indifference price:
Suppose we buy $q \in \mathbb{R}$ contracts, then we have $X_{T} \in \mathcal{X}(x-q \Pi)$. It follows that $\mathbb{E}^{\hat{\mathbb{Q}}}\left[X_{T}\right]=\mathbb{E}^{\mathbb{P}}\left[\frac{\hat{Y}_{T}(y)}{y} X_{T}\right]=x-q \Pi$. Then:

Proving Π is an indifference price

Check that $\Pi(x)=\mathbb{E}^{\mathbb{P}}\left[\frac{\hat{\underline{Y}}_{T}(y)}{y} f\right]=\mathbb{E}^{\hat{\mathbb{Q}}(y)}[f]$ is an indifference price:
Suppose we buy $q \in \mathbb{R}$ contracts, then we have $X_{T} \in \mathcal{X}(x-q \Pi)$. It follows that $\mathbb{E}^{\hat{\mathbb{Q}}}\left[X_{T}\right]=\mathbb{E}^{\mathbb{P}}\left[\frac{\hat{\underline{Y}}_{T}(y)}{y} X_{T}\right]=x-q \Pi$. Then:

$$
\begin{aligned}
V(x-q \Pi, q) & =\mathbb{E}^{\mathbb{P}}\left[U\left(X_{T}+q f\right)\right] \\
& =\mathbb{E}^{\mathbb{P}}\left[U\left(X_{T}+q f\right)\right]+\sum_{k=1}^{K} \lambda_{k}\left(\mathbb{E}^{\mathbb{Q}^{k}}\left[X_{T}\right]-(x-q \Pi)\right)
\end{aligned}
$$

Proving Π is an indifference price

Check that $\Pi(x)=\mathbb{E}^{\mathbb{P}}\left[\frac{\hat{\underline{Y}}_{T}(y)}{y} f\right]=\mathbb{E}^{\hat{\mathbb{Q}}(y)}[f]$ is an indifference price:
Suppose we buy $q \in \mathbb{R}$ contracts, then we have $X_{T} \in \mathcal{X}(x-q \Pi)$. It follows that $\mathbb{E}^{\hat{\mathbb{Q}}}\left[X_{T}\right]=\mathbb{E}^{\mathbb{P}}\left[\frac{\hat{\underline{Y}}_{T}(y)}{y} X_{T}\right]=x-q \Pi$. Then:

$$
\begin{aligned}
V(x-q \Pi, q) & =\mathbb{E}^{\mathbb{P}}\left[U\left(X_{T}+q f\right)\right] \\
& =\mathbb{E}^{\mathbb{P}}\left[U\left(X_{T}+q f\right)\right]+\sum_{k=1}^{K} \lambda_{k}\left(\mathbb{E}^{\mathbb{Q}^{k}}\left[X_{T}\right]-(x-q \Pi)\right)
\end{aligned}
$$

Simplify Lagrangian

- Let $y=\sum_{k=1}^{K} \lambda_{k}$ and $\mu_{k}=\frac{\lambda_{k}}{y} \Longrightarrow \mathbb{Q}=\sum_{k=1}^{K} \mu_{k} \mathbb{Q}^{k}$
- Notice $\mathbb{Q} \in \mathcal{M}^{\alpha}(S)$ since it is a convex combination of points in $\mathcal{M}^{\alpha}(S)$

Proving Π is an indifference price

Simplify Lagrangian:

$$
\begin{aligned}
L\left(X_{T}, y, \mathbb{Q}\right) & =\mathbb{E}^{\mathbb{P}}\left[U\left(X_{T}+q f\right)\right]+\sum_{k=1}^{K} \lambda_{k}\left(\mathbb{E}^{\mathbb{Q}^{k}}\left[X_{T}\right]-(x-q \Pi)\right) \\
& =\mathbb{E}^{\mathbb{P}}\left[U\left(X_{T}\right)\right]-y \mathbb{E}^{\mathbb{Q}}\left[X_{T}\right]+y(x-q \Pi) \\
& =\mathbb{E}^{\mathbb{P}}\left[U\left(X_{T}\right)-y \frac{\hat{Y}_{T}(y)}{y} X_{T}\right]+y(x-q \Pi) \\
& =\mathbb{E}^{\mathbb{P}}\left[V\left(\hat{Y}_{T}\right)\right]+y \mathbb{E}^{\mathbb{Q}}\left[X_{T}+q f\right]=\mathbb{E}^{\mathbb{P}}\left[V\left(\hat{Y}_{T}\right)+\hat{Y}_{T}\left(X_{T}+q f\right)\right]
\end{aligned}
$$

Proving Π is an indifference price

$$
\begin{aligned}
V(x-q \Pi, q) & =\mathbb{E}^{\mathbb{P}}\left[U\left(X_{T}+q f\right)\right]=L\left(X_{T}, y, \mathbb{Q}\right) \\
& =\mathbb{E}^{\mathbb{P}}\left[V\left(\hat{Y}_{T}\right)+\hat{Y}_{T}\left(X_{T}+q f\right)\right] \\
& =v(y)+\mathbb{E}^{\mathbb{P}}\left[\hat{Y}_{T} X_{T}\right]+\mathbb{E}^{\mathbb{P}}\left[\hat{Y}_{T} q f\right] \\
& =v(y)+(x-q \Pi) y+q \Pi y=u(x)=V(x, 0)
\end{aligned}
$$

We note that we can show this indifference price is unique under some initial wealth and some initial number of contracts bought.

Useful Results

- $x=-v^{\prime}(y)$
- $v(y)=\min _{\mathbb{Q} \in \mathcal{M}^{\alpha}(S)} E^{\mathbb{P}}\left[V\left(y \frac{d \mathbb{Q}}{d \mathbb{P}}\right)\right]=E^{\mathbb{P}}\left[V\left(y \frac{d \hat{\mathbb{Q}}}{d \mathbb{P}}\right)\right]$
- $v^{\prime}(y)=E^{\hat{\mathbb{Q}}}\left[V^{\prime}\left(y \frac{d \hat{\mathbb{Q}}}{d \mathbb{P}}\right)\right]$
- $U^{\prime}\left(X_{N}\right)=y \frac{d \hat{\mathrm{Q}}}{d \mathrm{P}}$
- $\Pi(x)=\mathbb{E}^{\hat{\mathbb{Q}}(y)}[f]$

Probability Notation

- $\mathbb{P}\left(\omega_{n}\right)=p_{n}$
- $\mathbb{Q}\left(\omega_{n}\right)=q_{n}$
- $\hat{\mathbb{Q}}\left(\omega_{n}\right)=\hat{q}_{n}$

Trinomial Model Example

- Initial market conditions: $S_{0}=100, r=0$.
- Probability space: $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$
- Actual Probabilities: $p_{1}=0.2, p_{2}=0.3, p_{3}=0.5$
- $x=5, U(x)=\ln (x)$

Trinomial Model Example

- $S_{0}=\frac{q_{1} S_{1}\left(\omega_{1}\right)+q_{2} S\left(\omega_{2}\right)+q_{3} S_{1}\left(\omega_{3}\right)}{1+r}$
- Sum of all probabilities add to 1

Trinomial Model Example

$$
\begin{aligned}
200 q_{1}+100 q_{2}+50 q_{3} & =100 \\
q_{1}+q_{2}+q_{3} & =1
\end{aligned}
$$

- $q_{1}=t, q_{2}=1-3 t, q_{3}=2 t, t \in\left(0, \frac{1}{3}\right)$

Trinomial Model Example

Conjugate: $V(y)=-\ln (y)-1$

$$
V^{\prime}(y)=-\frac{1}{y}
$$

$$
v(y)=\min _{\mathbb{Q} \in \mathcal{M}^{\alpha}(S)} E^{\mathbb{P}}\left[V\left(y \frac{d \mathbb{Q}}{d \mathbb{P}}\right)\right]
$$

Trinomial Model Example

$$
\begin{aligned}
v(y) & =\min _{\mathbb{Q} \in \mathcal{M}^{\alpha}(S)} E^{\mathbb{P}}\left[V\left(y \frac{d \mathbb{Q}}{d \mathbb{P}}\right)\right] \\
& =\min _{\mathbb{Q} \in \mathcal{M}^{\alpha}(S)} \Sigma_{n=1}^{3} p_{n}\left(-\ln \left(y \frac{q_{n}}{p_{n}}\right)-1\right) \\
& =\min _{\mathbb{Q} \in \mathcal{M}^{\alpha}(S)} 0.2\left(-\ln \left(y \frac{q_{1}}{0.2}\right)-1\right)+0.3\left(-\ln \left(y \frac{q_{2}}{0.3}\right)-1\right)+0.5\left(-\ln \left(y \frac{q_{3}}{0.5}\right)-1\right) \\
& =\min _{\mathbb{Q} \in \mathcal{M}^{\alpha}(S)}-\ln (y)-0.2 \ln \left(\frac{t}{0.2}\right)-0.3 \ln \left(\frac{1-3 t}{0.3}\right)-0.5 \ln \left(\frac{2 t}{0.5}\right)-1
\end{aligned}
$$

Trinomial Model Example

$$
\begin{aligned}
\frac{d}{d t} & \rightarrow 0.2\left(\frac{1}{\frac{t}{0.2}} \cdot \frac{1}{0.2}\right)+0.3\left(\frac{1}{\frac{1-3 t}{0.3}} \cdot-\frac{3}{0.3}\right)+0.5\left(\frac{1}{\frac{2 t}{0.5}} \cdot \frac{2}{0.5}\right) \\
& =\frac{0.2}{t}-\frac{0.9}{1-3 t}+\frac{1}{2 t} \\
& =\frac{0.7}{t}-\frac{0.9}{1-3 t} \\
& =\frac{0.7(1-3 t)-0.9(t)}{t(1-3 t)} \\
& =\frac{0.7-3 t}{t(1-3 t)} \Rightarrow 0
\end{aligned}
$$

Trinomial Model Example

$$
\begin{gathered}
0.7-3 t=0 \\
t=\frac{7}{30} \\
\hat{\mathbb{Q}}=\left(\begin{array}{l}
\hat{q}_{1} \\
\hat{q}_{2} \\
\hat{q}_{3}
\end{array}\right)=\left(\begin{array}{c}
\frac{7}{30} \\
\frac{9}{30} \\
\frac{14}{30}
\end{array}\right)
\end{gathered}
$$

Trinomial Model Example

$$
\begin{aligned}
x & =-v^{\prime}(y)=-\left(E^{\hat{\mathbb{Q}}}\left[V^{\prime}\left(y \frac{d \hat{\mathbb{Q}}}{d \mathbb{P}}\right)\right]\right) \\
& =-\Sigma_{n=1}^{3} \hat{q}_{n} \cdot\left(-\frac{1}{y\left(\frac{\hat{q}_{n}}{p_{n}}\right)}\right)=\Sigma_{n=1}^{3} \frac{p_{n}}{y} \\
5 & =\frac{0.2}{y}+\frac{0.3}{y}+\frac{0.5}{y}=\frac{1}{y} \\
y & =0.20
\end{aligned}
$$

Trinomial Model Example

$$
\begin{gathered}
U^{\prime}\left(X_{N}\right)=y \frac{d \hat{\mathbb{Q}}}{d \mathbb{P}} \\
U^{\prime}\left(X_{N}\left(\omega_{n}\right)\right)=y \frac{\hat{q}_{n}}{p_{n}} ; n=1,2,3 \\
X_{N}\left(\omega_{n}\right)=\frac{1}{y \frac{\hat{q}_{n}}{p_{n}}}=\frac{p_{n}}{y \cdot \hat{q}_{n}} \\
\left(\begin{array}{l}
X_{N}\left(\omega_{1}\right) \\
X_{N}\left(\omega_{2}\right) \\
X_{N}\left(\omega_{3}\right)
\end{array}\right)=\left(\begin{array}{l}
\frac{p_{1}}{y \cdot \hat{q}_{1}} \\
\frac{p_{2}}{y \cdot \hat{q}_{2}} \\
\frac{p_{3}}{y \cdot \hat{q}_{3}}
\end{array}\right)=\left(\begin{array}{l}
\frac{0.2}{(0.2)\left(\frac{7}{30}\right)} \\
\frac{0.3}{(0.2)\left(\frac{9}{30}\right)} \\
\frac{0.5}{(0.2)\left(\frac{14}{30}\right)}
\end{array}\right)=\left(\begin{array}{l}
4.29 \\
5.00 \\
5.36
\end{array}\right)
\end{gathered}
$$

Trinomial Model Example

- D: Price of Derivative Security
- Strike Price: $K=50$

Trinomial Model Example

$$
\begin{aligned}
\Pi(x) & =E_{\hat{\mathbb{Q}}}[f] \\
\Pi(5) & =\mathbb{E}_{\hat{\mathbb{Q}}}[D] \\
& =\sum_{i=1}^{3} D_{1}\left(\omega_{i}\right) \cdot \hat{q}_{i} \\
& =150 \cdot \frac{7}{30}+50 \cdot \frac{9}{30}+0 \cdot \frac{14}{30} \\
& =50
\end{aligned}
$$

Next Steps

Under markets with interest rate, we can apply a change of numeraire to essentially convert the problem to one without interest (the discount factor is an example of changing the numeraire).

