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Overview

The field of mathematical finance has long been concerned with the fair valuation
of derivative securities. The no-arbitrage pricing approach, summarized in [1], uses
the idea of replicating strategies to find fair prices in a simplified complete market
example. This approach, however, has sharp limitations when conditions of market
incompleteness are introduced. There is an extensive literature on optimal hedging in
incomplete markets. We consider optimal hedging in the discrete time case. Following
[2], [3], and [4], we apply the sequential regression approach to option hedging. We
examine the question of equivalence of hedging strategies in the binomial case, and
the question of stability of sequential regression under model perturbations.

Binomial Model

We introduce the binomial asset pricing model as presented in [1]. The binomial
model consists of two components:
• A risk-free money market asset with constant interest r.

• A risky stock asset whose initial value is S0 and whose value at each time period
is determined by a “coin flip” (not necessarily fair). Given heads, the stock value
will increase by an upfactor u. Given tails, the stock value will decrease by a
downfactor d.
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Fig. 1: Example of a 2-period Binomial Model

Given this market, we define the wealth process for a small investor in the market as
follows:

Xn+1 = (1 + r)(Xn − ϑnSn) + ϑnSn+1,

where Xn represents the wealth the investor has at time n and ϑn represents the
number of stocks held at time n.
Let VN be a random variable of the coin flips (ω1, . . . , ωN ) and define the stochastic
process (Vn)0≤n≤N such that

Vn(ω1, . . . , ωn) =
1

(1 + r)N−n
Ẽ[VN | ω1, . . . , ωn],

where Ẽ is the conditional expected value under risk-neutral probabilities. The bino-
mial model represents a complete market, where there must exist a unique risk-neutral
probability under which discounted option values are martingales. I.e.

V0 =
1

(1 + r)N
Ẽ[VN ].

We can also derive the following formula for ϑn from the wealth process above:

ϑn(ωn) =
Vn+1(ω1, . . . , ωn, H)− Vn+1(ω1, . . . , ωn, T )

Sn+1(ω1, . . . , ωn, H)− Sn+1(ω1, . . . , ωn, T ).
(1)

We hereby refer to this method as backward recursion, and we note that it provides
a unique and exact hedging strategy.

Föllmer-Schweizer Decomposition

While the method of backward recursion provides an optimal hedging strategy for the binomial
model, we aim to obtain a more general method of optimal hedging. We first reframe our problem
as:

min
ξ∈Θ

E[(VN − V0 −GT (ξ))2]

where Θ is the set of all predictable processes ξ such that ξk∆Sk ∈ L2(P ) and G(ξ) :=∑k
j=1 ξj∆Sj. In our particular application, VN represents the payoff the investor must pay at

time N , V0 is the initial price of the option, or the initial capital available to the investor, and
GT (ξ) is the gains the investor makes in trade. The problem is now one of minimizing net square
loss, equivalent to the problems posed in [2]–[4].
If certain nondegeneracy conditions hold, we can decompose the wealth process into its almost-
surely unique Doob Decomposition to obtain the discrete Föllmer-Schweizer Decomposition:

VN = V0 +

N−1∑
j=0

ξj∆Sj+1 + LN ,

where

ξn :=
Cov(VN −

∑N−1
j=n+1 ξj∆Sj+1,∆Sn+1 | Fn)

Var(∆Sn+1 | Fn)
for n = 0, ..., N, (2)

where ∆Sn = Sn − Sn−1 is the change in the stock price at time n, and LN is a martingale
with initial value 0. This hedging method is known as sequential regression.

Theorem. Under the binomial model, the hedging strategy (ϑn)0≤n≤N−1 in (1) is equivalent
to the hedging strategy (ξn)0≤n≤N−1 in (2).

Trinomial Model

While the binomial model is often used as an introductory tool, most models used in practice
exhibit incompleteness, that is the inability to hedge exactly. An example of an incomplete
market is the trinomial model. Similar to the binomial model, we have a risky asset and a
risk-free asset, and the value of the risky asset at each time step is determined by a small set of
outcomes. This time, we have three possible outcomes for the coin flip instead of two. That is,
along with the possibility of an increase by a factor of u and decrease by a factor of d, we allow
for the possibility that the stock price does not change between two consecutive time steps.
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Fig. 2: Example of a 2-period Trinomial Model

If we attempt to apply backward recursion to determine a hedging strategy for the trinomial
model, we obtain an overdetermined system with no solution. Thus in the trinomial model we
must use the more general strategy of sequential regression to find an optimal hedging strategy.

Market Stability

We now subject the pricing model to market perturbations. We shift our focus
to the change in price of the risky asset at each time step, defined by the process
(∆Sn)1≤n≤N , which can be decomposed as

∆Sn = λ∆t + σ∆W

where λ and σ are constants describing the market, ∆t is a process representing
the change in time, and ∆W is a martingale with initial expectation 0 representing
hedging error. Then, a market perturbation can be represented, for some ε, λ′, σ′ ∈
R, as

∆Sεn = (λ + ελ′)∆t + (σ + εσ′)∆W

It is of interest to consider whether the sequential regression is stable under such
perturbations; if it is not, then our predictions for asset valuation can not be consid-
ered accurate once too much error is present in our assumed values for ε, λ, and σ.
Similar questions of stability were considered in a continuous time setting in [5] and
[6].

Fig. 3: Behavior of the Trinomial Model Under Market Perturbations

Theorem. In the discrete time setting, the perturbed hedge ξε converges asymp-
totically to ξ0, that is

ξε − ξ0

ε

ε→0−−−→ C

where C is a constant dependent on market parameters.
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