Laplacian Eigenmaps and Chebyshev Polynomials

Jonathan Kerby-White, Yiheng Su

University of Connecticut

August 1, 2023

Yiheng, Jonathan (UConn) Laplacian Eigenmaps and Chebyshev Polynom 8/01/23

く 何 ト く ヨ ト く ヨ ト

- Introduction to Graph Laplacian Operators
- 2 Formula for Eigenvalues and Eigenfunctions
- 3 Eigencoordinates and Chebyshev Polynomials
- 4 Analysis of Robin Problem on [-1,1]

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

1 Introduction to Graph Laplacian Operators

- 2 Formula for Eigenvalues and Eigenfunctions
- 3 Eigencoordinates and Chebyshev Polynomials

Analysis of Robin Problem on [-1,1] Continuous Robin Problem with Uniformly Spaced Points Discrete Robin Problem with Uniformly Spaced Points

<日

<</p>

Introduction

Eugenmaps:

- Eigenmaps are crucial in analysis, geometry, and machine learning, especially for nonlinear dimension reduction.
- The Laplacian eigenmaps introduced by Belkin and Niyogi are widely used for dimension reduction in data analysis.

Focus of the Work:

- Model situations with uniformly spaced points within intervals are considered.
- Eigenmaps are computed both analytically and numerically.

Investigations:

- Exploring relationships between eigenmaps and orthogonal polynomials.
- Studying the method's dependence and stability when varying the choice of Laplacian.

8/01/23

Definitions of Graph Laplacian Operators when k = 1

We define the graph $G = \{V, E\}$ on the interval [-1, 1], where V consists of n equally spaced points $\{x_0 = -1, x_1, \ldots, x_{n-1} = 1\}$, and $(x_i, x_j) \in E$ if $|x_i - x_j| = \frac{2}{n-1}$. Let W_G be the adjacency matrix and D_G be the degree matrix of G. Then, the regular Laplacian matrix is defined by

$$L_{\rm reg} := D_G - W_G.$$

The probabilistic Laplacian matrix is defined by

$$L_{\mathsf{prob}} := D_G^{-1}(D_G - W_G).$$

 $L_{\text{reg}} = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 \\ 1 & -2 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & -1 & 1 \end{bmatrix}, L_{\text{prob}} = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & -1 & 1 \end{bmatrix}$

8/01/23

Definitions of Graph Laplacian Operators when k = 1

We define graph $G' := \{V, E \cup (x_0, x_{n-1})\}$ from *n* evenly spaced points on a circle. Then, the periodic Laplacian is defined by

$$L_{\mathsf{per}} := D_{G'} - W_{G'}.$$

$$L_{\text{reg}} = \begin{bmatrix} 2 & -1 & 0 & \cdots & -1 \\ 1 & -2 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ -1 & 0 & \cdots & -1 & 2 \end{bmatrix}$$

Introduction to Graph Laplacian Operators

2 Formula for Eigenvalues and Eigenfunctions

3 Eigencoordinates and Chebyshev Polynomials

Analysis of Robin Problem on [-1,1] Continuous Robin Problem with Uniformly Spaced Points Discrete Robin Problem with Uniformly Spaced Points

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Formula for Eigenvalues and Eigenfunctions

Periodic Laplacian.
$$\lambda = 2(1 - cos(\pi \alpha \delta))$$
 and

$$f(x) = e^{i\pi\alpha x}, \alpha \in \mathbb{Z}$$

2 Regular Laplacian. $\lambda = 2(1 - \cos(\pi \alpha \delta))$ and

$$f(x) = egin{cases} \cos(\pilpha x) & ext{with } c ext{ even} \ \sin(\pilpha x) & ext{with } c ext{ odd} \end{cases},$$

where $\alpha = \frac{c}{\delta+2}, c \in \mathbb{Z}$

(

$$f(x) = \begin{cases} \cos(\pi \alpha x) & \text{with } c \text{ even} \\ \sin(\pi \alpha x) & \text{with } c \text{ odd} \end{cases},$$

where $\alpha = \frac{c}{2}$ for $c \in \mathbb{Z}$.

御下 イヨト イヨト ニヨ

Theorem

Suppose $L_{n,k=1}^{per}$ is the periodic Laplacian. The eigenvalues are $\lambda(\alpha) = 2 - 2\cos(\pi\alpha\delta)$ where $\alpha \in \{0, 1, ..., n-1\}$. When n is even, the eigenvalues are exactly $\lambda(0), \lambda(1), ..., \lambda(\frac{n}{2})$. When n is odd, the eigenvalues are exactly $\lambda(0), \lambda(1), ..., \lambda(\frac{n-1}{2})$.

Theorem

Suppose $L_{n,k}^{per}$ is the periodic Laplacian. The eigenvalues of $L_{n,k}^{per}$ are in the form

$$\lambda = 2(k - \sum_{j=1}^{k} \cos(j\pi\alpha\delta)).$$

The corresponding eigenfunctions are in the form $f(x) = e^{i\pi\alpha x}$,

where $\alpha \in \mathbb{Z}$.

Lemma

The period of
$$\lambda(\alpha) = 2(k - \sum_{j=1}^{k} \cos(j\pi\alpha\delta))$$
 is n.

Theorem

Suppose $L_{n,k}^{per}$ is the periodic Laplacian with k < n. The eigenvalues are given by $\lambda(\alpha) = 2(k - \sum_{j=1}^{k} \cos(j\pi\alpha\delta))$, where $\alpha \in \{0, 1, \dots, n-1\}$.

Note: we do not know the multiplicity of eigenvalues in the general case.

超 とう きょう く ひょう しょう

11/24

Introduction to Graph Laplacian Operators

2 Formula for Eigenvalues and Eigenfunctions

Bigencoordinates and Chebyshev Polynomials

Analysis of Robin Problem on [-1,1]
Continuous Robin Problem with Uniformly Spaced Points

Discrete Robin Problem with Uniformly Spaced Points

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Suppose *L* is a Laplacian matrix, and f_1 and f_ℓ are the eigenfunctions corresponding to the first and ℓ^{th} smallest eigenvalues of *L*. The eigencoordinates are $(f_1(x), f_\ell(x))$.

We want to investigate the error, E, between our eigencoordinates and the Chebyshev polynomial T_{ℓ} . The error can be obtained from the following equation:

$$E(x) = f_\ell(x) - T_\ell(f_1(x)).$$

$T_{\ell}(\sin(y))$

We have a lemma for the formula of the $T_{\ell}(\sin(y))$.

Lemma

$$T_{\ell}(\sin(y)) = rac{i^{-\ell}}{2}(e^{i\ell y} + (-1)^{\ell}e^{-i\ell y}).$$

The following are the first few Chebyshev polynomials of sin(y)

$$T_{0}(\sin(y)) = 1$$

$$T_{1}(\sin(y)) = \sin(y)$$

$$T_{2}(\sin(y)) = -\cos(2y)$$

$$T_{3}(\sin(y)) = -\sin(3y)$$

$$T_{4}(\sin(y)) = \cos(4y)$$

э

・ロト ・ 同ト ・ ヨト ・ ヨト

Eigencoordinates and Chebyshev Polynomial

Theorem

 $E(x) = f_{\ell}(x) - T_{\ell}(f_1(x)) = 0$ for the regular Laplacian matrix.

Theorem

 $E(x) = f_{\ell}(x) - T_{\ell}(f_1(x)) = 0$ for the probabilistic Laplacian matrix.

Note: these theorems can be proved using the formula of eigenfunctions for L_{reg} and L_{prob} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ◆□ ● ◇◇◇

Theorem

 $E(x) = f_{\ell}(x) - T_{\ell}(f_1(x)) = 0$ for the periodic Laplacian matrix.

Proof idea: L^{per} is of the form $e^{i\pi\ell x}$. λ_{ℓ} has multiplicity 2 and the corresponding eigenvectors are $\{e^{i\pi\ell x}, e^{-i\pi\ell x}\}$ which is a basis for the eigenspace of λ_{ℓ} . Let $y = \pi x$. So, $f_{\ell}(x) = \frac{e^{i\ell y} + e^{-i\ell y}}{2} = \cos(\ell y)$ is also an eigenvector for the eigenspace of λ_{ℓ} . By the definition of Chebyshev polynomials, we have $T_{\ell}(\cos(y)) = \cos(\ell y) = f_{\ell}(x)$.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Introduction to Graph Laplacian Operators

2 Formula for Eigenvalues and Eigenfunctions

3 Eigencoordinates and Chebyshev Polynomials

Analysis of Robin Problem on [-1,1]
 Continuous Robin Problem with Uniformly Spaced Points
 Discrete Robin Problem with Uniformly Spaced Points

通 ト イ ヨ ト イ ヨ ト

Currently, we possess three distinct types of graph Laplacian operators: L_{reg} , L_{prob} , and L_{per} . Can these operators be consolidated into a single type, or do they belong to different families of Laplacians?

く 何 ト く ヨ ト く ヨ ト

18 / 24

Definition

Suppose *u* is an eigenfunction of the Laplacian $L_{n\to\infty,k=1}$ with corresponding eigenvalue λ . The Robin Boundary Conditions are

$$\begin{cases} u'' = -\lambda u & \text{on } (-1,1) \\ \partial_n u = \rho u & \text{at } x = \pm 1 \end{cases}$$
(4.1)

where ∂_n is the outward normal derivative at $x = \pm 1$.

For the equation $e^{2i\pi\alpha}=\pmrac{i\pi\alpha+
ho}{i\pi\alphaho}$, we have a formula for ho in terms of lpha,

$$\rho(\alpha) = i\pi\alpha \frac{(\pm e^{2i\pi\alpha} - 1)}{(\pm e^{2i\pi\alpha} + 1)} = i\pi\alpha \frac{(\pm e^{i\pi\alpha} - e^{-i\pi\alpha})}{(\pm e^{i\pi\alpha} + e^{-i\pi\alpha})}$$
$$= \begin{cases} -\pi\alpha \tan(\pi\alpha), & \text{when } u = \cos(\pi\alpha x) \\ \pi\alpha \cot(\pi\alpha), & \text{when } u = \sin(\pi\alpha x) \end{cases}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\begin{aligned} &-\pi\alpha\tan(\pi\alpha)=0\iff \alpha=0 \text{ or } \tan(\pi\alpha)=0\iff \alpha\in\mathbb{Z}.\\ &\pi\alpha\cot(\pi\alpha)=0\iff \alpha=0 \text{ or } \cot(\pi\alpha)=0\iff \alpha\in\mathbb{Z}+\frac{1}{2}.\\ &\text{Therefore, } \rho(\alpha)=0\iff \alpha\in\frac{c}{2}, \text{ where } c\in\mathbb{Z}. \text{ Thus,} \end{aligned}$

$$u = \begin{cases} \sin(\pi \frac{c}{2}x), & \text{when } c \text{ is odd} \\ \cos(\pi \frac{c}{2}x), & \text{when } c \text{ is even} \end{cases}$$

.

 $\rho(\alpha)$

æ

Definition

Suppose *u* is an eigenfunction of the Laplacian matrix $L_{n,k=1}$ of any variety with corresponding eigenvalue λ . The Discrete Robin Boundary Conditions are

$$\begin{cases} Lu = -\lambda u & \text{on } (-1,1) \\ L_{n,k=1}u = \sigma u & \text{at } x = \pm 1 \end{cases}.$$
(4.2)

通 ト イヨ ト イヨト

Previous work on the continuous Laplacian shows that when $\rho = 0$, the eigencoordinates will be exactly the Chebyshev polynomials. Hence, $\lim_{n\to\infty} \sigma = 0$ implies that the eigencoordinates for the Probabilistic Laplacian matrix are the Chebyshev polynomials.