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1. Glossary of Notation

The following are general notation used in the paper unless stated otherwise:

• The jth point: xj

• The number of chosen points: n

• The distance between equally spaced points: δ

• The number of points adjacent to xj on one side: k

• Regular Laplacian: L

• Probabilistic Laplacian: L

• Periodic Laplacian: Lper
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• Tℓ(x) is the ℓth Chebyshev polynomial.

Note: All Laplacians in this document are for k = 1 unless stated otherwise.

2. Formula for Eigenvalues and Eigenfunctions

2.1. Finding Formula for Eigenvalues. The process of finding eigenvalues of the different Laplacian

matrices follows a pattern resulting in the following, helpful lemma.

Lemma 1. Let L be a Laplacian matrix. If the middle n− 2 rows are of the form

c


−1 2 −1 0 . . . . . . 0

0 −1 2 −1 0 . . . 0
...

. . .
...

0 . . . −1 2 −1


then for a vector f(x) = Aeiπαx + Be−iπαx to be an eigenvector, its corresponding eigenvalue λ must be

λ = 2c(1− cos(παδ)).

Proof. Let L be a Laplacian matrix of any variety. Suppose that for 1 ≤ j ≤ n− 2, the j-th row of L is

L(xj) = c
(
0 . . . −1 2 −1 0 ... 0

)
where the 2 is at index j. If f(x) = Aeiπαx + Be−iπαx is an eigenvector of L, we have that L(Aeiπαx +

Be−iπαx) = λ(Aeiπαx +Be−iπαx) for some constant λ. In particular, for 1 ≤ j ≤ n− 2, Lf(xj) = λf(xj).

Note that

Lf(xj) = c(−f(xj−1) + 2f(xj)− f(xj+1)) = c(−f(xj − δ) + 2f(xj)− f(xj + δ))

= c(−(Aeiπα(xj−δ) +Be−iπα(xj−δ)) + 2(Aeiπαxj +Be−iπαxj )− (Aeiπα(xj+δ) +Be−iπα(xj+δ)))

= c(Aeiπαxj (2− eiπαδ − e−iπαδ) +Be−iπαxj (2− eiπαδ − e−iπαδ))

= 2c(1− cos(παδ))(Aeiπαxj +Be−iπαxj ) = 2c(1− cos(παδ))f(xj)

Observe that the coefficient in equation 2c(1−cos(παδ)) is a constant which does not depend on xj . Thus

if f(x) is an eigenvector for L, its corresponding eigenvalue λ must be λ = 2c(1− cos(παδ)). □

We can verify this numerically. In Figure 2.1 we plot the eigenvalues of the Periodic Laplacian for n = 40

and k = 1 and we plot the calculated eigenvalues and see that the graphs are qualitatively the same.
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Figure 1. The red dots (left) represent the eigenvalues of Lper computed by Mathematica

where n = 40 and k = 1. The blue dots (right) represent the eigenvalues of Lper computed

from the formula λ(α) = 2 − 2 cos(παδ) where α ∈ {0, 1, . . . , 39} with values sorted nu-

merically from smallest to largest.

2.2. Periodic Laplacian. For the Periodic Laplacian, we choose n points from a circle for ease of

visualization. From there we project those points to the interval [−1, 1] which requires us to choose n

points where x0 = −1 and xn−1 = 1.

Theorem 2.1. The function f(x) = eiπαx, α ∈ Z is an eigenfunction for the Periodic Laplacian.

Proof. Consider the periodic Laplacian, Lper, in this case given by,

(2.1) Lper
j,m =


2 j = m

1 m = j ± 1 (mod n)

0 otherwise.

Note: We define f(x0) = f(xn−1) for the Periodic Laplacian.

Applying Lemma 1:

Lperf(xj) =
n−1∑
m=0

Lper
j,mf(xm) = λf(xj),

we obtain an eigenvalue of λ = 2(1− cos(παδ)).

Notice from our interval [−1, 1], we have x0 = −1 and xn−1 = 1. By definition we know that f(x0) =

f(xn−1) =⇒ e−iπα = eiπα. This can only hold for α ∈ Z. When α ∈ Z, we see from the General Form

for Eigenvalues proof that

Lf = λf

as needed.

□
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2.3. Regular Laplacian. For the Regular Laplacian we consider the function f(x) = Aeiπαx+Be−iπαx.

Theorem 2.2. Eigenvalues of L are of the form λ = 2(1− cos(παδ)).

Proof. L(xj) = 1
(
0 . . . −1 2 −1 0 . . . 0

)
where c = 1. By Lemma 1 the corresponding eigen-

value is λ = 2(1− cos(παδ). □

Finding the eigenvalue is done using the internal points. We next consider the end points where j = 0

and j = n− 1 in order to solve for α,A,B in f(x).

Theorem 2.3. α = c
δ+2 where c ∈ Z, A = ±B so eigenvectors are of the form f(x) = cos(παx) (with c

even) or sin(παx) (with c odd).

Proof. Consider the end points where j = 0 and j = n− 1. Then,

Lf(−1) = Aeiπα(−1) +Be−iπα(−1) − (Aeiπα(−1+δ) +Be−iπα(−1+δ))(2.2)

Lf(1) = Aeiπα(1) +Be−iπα(1) − (Aeiπα(1−δ) +Be−iπα(1−δ))(2.3)

We need Lf(−1) = λf(−1) and Lf(1) = λf(1). We can set up the system of equations to be

Ae−iπα(e−iπαδ − 1) +Beiπα(eiπαδ − 1) = 0(2.4)

Aeiπα(eiπαδ − 1) +Be−iπα(e−iπαδ − 1) = 0(2.5)

This is, equivalently,

(2.6) e−iπα(e−iπαδ − 1)

 1 −eiπα(2+δ)

−eiπα(2+δ) 1

A
B

 =

0
0



For

A
B

 to be non-trivial (that is, not the zero vector), the matrix M =

 1 −eiπα(2+δ)

−eiπα(2+δ) 1

 must

be singular. Thus, we can find α when det(M) = 0. Completing this calculation gives us α = c
δ+2 where

c ∈ Z. When we plug in α into M we find that A = (−1)cB. □

2.4. Probabilistic Laplacian. For the Probabilistic Laplacian we consider functions of the form

f(x) = Aeiπαx +Be−iπαx

Theorem 2.4. Eigenvalues of L are of the form λ = 1− cos(παδ).

Proof. For xj with 0 < j < n − 1, L(xj) = 1
2

(
0 . . . −1 2 −1 0 . . . 0

)
where c = 1

2 . By Lemma

1 the corresponding eigenvalue is λ = 1− cos(παδ). □
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Finding the eigenvalue is done using the internal points (i.e. xj with 0 < j < n − 1). We next consider

the endpoints where j = 0 and j = n− 1 in order to solve for α,A,B in f(x).

Theorem 2.5. α = c
2 for c ∈ Z, and A = ±B. Thus eigenvectors of Ln,1 are of the form 2A cos(παx)

(with c even) or 2Ai sin(παx) (with c odd).

Proof. Consider the endpoints x0 = −1 and xn−1 = 1. Then we have that

Lf(−1) = Ae−iπα +Beiπα − (Aeiπα(δ−1) +Be−iπα(δ−1))(2.7)

Lf(1) = Aeiπα +Be−iπα − (Aeiπα(1−δ) +Be−iπα(1−δ))(2.8)

Since we want Lf = λf , by 3.8 and 3.9, we have that

Ae−iπα +Beiπα − (Aeiπα(δ−1) +Be−iπα(δ−1)) =
1

2
(2− eiπαδ − e−iπαδ)(Ae−iπα +Beiπα)

Aeiπα +Be−iπα − (Aeiπα(1−δ) +Be−iπα(1−δ)) =
1

2
(2− eiπαδ − e−iπαδ)(Aeiπα +Be−iπα)

Equivalently, −
1
2e

−iπα(δ+1)
(
−1 + e2iπαδ

)
1
2e

−iπα(δ−1)
(
−1 + e2iπαδ

)
1
2e

−iπα(δ−1)
(
−1 + e2iπαδ

)
−1

2e
−iπα(δ+1)

(
−1 + e2iπαδ

)

A
B

 =

0
0


Factoring out the entry along the diagonal, we have

−1

2
e−iπα(δ+1)

(
−1 + e2iπαδ

) 1 −e2iπα

−e2iπα 1

A
B

 =

0
0



We want to find a non-trivial solution for A,B. Then M =

 1 −e2iπα

−e2iπα 1

 must be a singular matrix.

So we can solve for α by fixing det(M) = 0. Completing this calculation yields α = c
2 for c ∈ Z. Using

this, we can solve for A = B (for even c) or A = −B (for odd c). Thus, the eigenvectors of L are of the

form A(eiπ
c
2
x + e−iπ c

2
x) and A(e−iπ c

2 − e−iπ c
2 ), or equivalently, 2A cos(π c

2x) for even c or 2Ai sin(π c
2x) for

odd c. Normalizing, we find that f(x) = cos(π c
2x) if c is even and sin(π c

2x) if c is odd since A can be any

scalar multiple. □

3. Eigencoordinates and Chebyshev Polynomials

Definition 3.1. The Chebyshev Polynomials of the first kind Tn are defined by Tn(cos(θ)) = cos(nθ).

The following is the recursive definition for Chebyshev Polynomials of the first kind.
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Definition 3.2. The Chebyshev polynomials of the first kind are defined by the recurrence relation.

T0(x) = 1

T1(x) = x

...

Tℓ+1(x) = 2xTℓ(x)− Tℓ−1(x)

Suppose L is a Laplacian matrix and f1 and fℓ are the eigenfunctions corresponding to the first and ℓth

smallest eigenvalues of L. The eigencoordinates are (f1(x), fℓ(x)). We want to investigate the error, E,

between our eigencoordinates and the Chebyshev polynomial Tℓ. The error can be obtained from the

following equation

E(x) = fℓ(x)− Tℓ(f1(x)).(3.1)

Previously the input of the Chebyshev polynomials is cos(y), we want to investigate the Chebyshev

polynomials with input sin(y). Following is a lemma for the formula of the Tℓ(sin(y)).

Theorem 3.3.

Tℓ(sin(y)) =
i−ℓ

2
(eiℓy + (−1)ℓe−iℓy).

Proof. We will use induction for the proof.

Base Case: When ℓ = 0, T0(sin(y)) =
1
2(e

0 + e0) = 1.

When ℓ = 1, T1(sin(y)) =
1
2i(e

iy − e−iy) = 1
2i2i sin(ℓy) = sin(ℓy).

Induction: Suppose that Tℓ(sin(y)) =
i−ℓ

2 (eiℓy + (−1)ℓe−iℓy). We want to show that Tℓ+1(sin(y)) =

i−(ℓ+1)

2 (ei(ℓ+1)y + (−1)ℓ+1e−i(ℓ+1)y).

According to the Definition 3.2, we know that

Tℓ+1(sin(y)) = 2 sin(y)Tℓ(sin(y))− Tℓ−1(sin(y))

= 2 sin(y)
i−ℓ

2
(eiℓy + (−1)ℓe−iℓy)− i−(ℓ−1)

2
(ei(ℓ−1)y + (−1)ℓ−1e−i(ℓ−1)y)

=
i−(l+1)

2
(2
(eiy − e−iy)

2i
i(eiℓy + (−1)ℓe−iℓy)− i2(ei(ℓ−1)y + (−1)ℓ−1e−i(ℓ−1)y))

=
i−(l+1)

2
((eiy − e−iy)(eiℓy + (−1)ℓe−iℓy) + (ei(ℓ−1)y + (−1)ℓ−1e−i(ℓ−1)y))

=
i−(l+1)

2
(ei(ℓ+1)y + (−1)ℓe−i(ℓ−1)y − ei(ℓ−1)y + (−1)ℓ+1e−i(ℓ+1)y + ei(ℓ−1)y + (−1)ℓ−1e−i(ℓ−1)y)

=
i−(ℓ+1)

2
(ei(ℓ+1)y + (−1)ℓ+1e−i(ℓ+1)y)
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Thus, we can conclude that

Tℓ(sin(y)) =
i−ℓ

2
(eiℓy + (−1)ℓe−iℓy).

□

The following are the first few Chebyshev polynomials of sin(y)

T0(sin(y)) = 1

T1(sin(y)) = sin(y)

T2(sin(y)) = − cos(2y)

T3(sin(y)) = − sin(3y)

T4(sin(y)) = cos(4y)

T5(sin(y)) = sin(5y)

...

3.1. Regular Laplacian and Chebyshev Polynomial. Suppose L is a regular Laplacian matrix with

k = 1. We want to investigate the correlation between eigencoordinates and Tℓ(sin(y)). According to

Theorem 2.3, we know the eigenfunctions of L are cos(cπ n−1
2n x) if c is even and sin(cπ n−1

2n x) if c is odd,

where c is an integer from 0 to n− 1.

Corollary 3.4. E(x) = fℓ(x)− Tℓ(f1(x)) = 0 for the regular Laplacian matrix.

Proof. Suppose ℓ is even. Then, fℓ(x) = cos(ℓπ n−1
2n x). Let y = π n−1

2n x. We also know − cos(ℓy) is an

eigenfunction corresponding to the ℓth smallest eigenvalue because it is a scalar multiple of fℓ(x). Notice

that f1(x) = sin(π n−1
2n x) = sin(y). Then, we have

E(x) = fℓ(x)− Tℓ(sin(y))
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According to the lemma 3.3,

E(x) = fℓ(x)− Tℓ(sin(y))

= fℓ(x)−
i−ℓ

2
(eiℓy + (−1)ℓe−iℓy)

=

fℓ(x)− 1
2(e

iℓy + e−iℓy), if ℓ mod 4 = 0

fℓ(x) +
1
2(e

iℓy + e−iℓy), if ℓ mod 4 = 2

=

fℓ(x)− cos(ℓy), if ℓ mod 4 = 0

fℓ(x) + cos(ℓy), if ℓ mod 4 = 2

Since fℓ can be either ± cos(ℓy), we can conclude that E(x) = fℓ(x)− Tℓ(sin(y)) = 0.

Suppose ℓ is odd. Then, fℓ(x) = sin(ℓπ n−1
2n x). Let y = π n−1

2n x. We also know − sin(ℓy) is an eigenfunction

corresponding to the ℓth smallest eigenvalue because it is a scalar multiple of fℓ(x). Notice that f1(x) =

sin(π n−1
2n x) = sin(y). Then, we have

E(x) = fℓ(x)− Tℓ(sin(y))

According to the Theorem 3.3,

E(x) = fℓ(x)− Tℓ(sin(y))

= fℓ(x)−
i−ℓ

2
(eiℓy + (−1)ℓe−iℓy)

=

fℓ(x)− 1
2i(e

iℓy − e−iℓy), if ℓ mod 4 = 1

fℓ(x) +
1
2i(e

iℓy + e−iℓy), if ℓ mod 4 = 3

=

fℓ(x)− sin(ℓy), if ℓ mod 4 = 1

fℓ(x) + sin(ℓy), if ℓ mod 4 = 3

Since fℓ can be either ± sin(ℓy), we can conclude that E(x) = fℓ(x)− Tℓ(sin(y)) = 0. □

3.2. Probabilistic Laplacian and Chebyshev Polynomial. Suppose L is a probabilistic Laplacian

matrix with k = 1. We want to investigate the correlation between eigencoordinates and Tℓ(sin(y)).

According to Theorem 2.5, we know the eigenfunctions of Ln,1 are cos( cπx2 ) if c is even and sin( cπx2 ) if c

is odd, where c is an integer from 0 to n− 1.

Corollary 3.5. E(x) = fℓ(x)− Tℓ(f1(x)) = 0 for the probabilistic Laplacian matrix.
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Proof. Suppose ℓ is even. Then, fℓ(x) = cos( ℓπx2 ). Let y = πx
2 . We also know −cos(ℓy) is an eigenfunction

corresponding to the ℓth smallest eigenvalue because it is a scalar multiple of fℓ(x). Notice that f1(x) =

sin(πx2 ) = sin(y). Then, we have

E(x) = fℓ(x)− Tℓ(sin(y))

According to the Theorem 3.3,

E(x) = fℓ(x)− Tℓ(sin(y))

= fℓ(x)−
i−ℓ

2
(eiℓy + (−1)ℓe−iℓy)

= fℓ(x)±
1

2
(eiℓy + e−iℓy)

=

fℓ(x)− cos(ℓy), if ℓ mod 4 = 0

fℓ(x) + cos(ℓy), if ℓ mod 4 = 2

Since fℓ can be either ± cos(ℓy), we can conclude that E(x) = fℓ(x)− Tℓ(sin(y)) = 0.

Suppose ℓ is odd. Then, fℓ(x) = sin( ℓπx2 ). Let y = πx
2 . We also know − sin(ℓy) is an eigenfunction

corresponding to the ℓth smallest eigenvalue because it is a scalar multiple of fℓ(x). Notice that f1(x) =

sin(πx2 ) = sin(y). Then, we have

E(x) = fℓ(x)− Tℓ(sin(y))

According to the Theorem 3.3,

E(x) = fℓ(x)− Tℓ(sin(y))

= fℓ(x)−
i−ℓ

2
(eiℓy + (−1)ℓe−iℓy)

=

fℓ(x)− 1
2i(e

iℓy − e−iℓy), if ℓ mod 4 = 1

fℓ(x) +
1
2i(e

iℓy + e−iℓy), if ℓ mod 4 = 3

=

fℓ(x)− sin(ℓy), if ℓ mod 4 = 1

fℓ(x) + sin(ℓy), if ℓ mod 4 = 3

Since fℓ can be either ± sin(ℓy), we can conclude that E(x) = fℓ(x)− Tℓ(sin(y)) = 0. □

3.3. Periodic Laplacian and Chebyshev Polynomial.

Theorem 3.6. Assume that f1(x) is the eigenfunction corresponding to the 1st non-zero eigenvalue λ1

of Lper and fℓ(x) is the ℓth eigenfunction corresponding to the ℓth eigenvalue λℓ of Lper, fℓ(x) = Tℓ(x).
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Proof. From Theorem 2.1 an eigenvector of Lper is of the form eiπℓx. λℓ has multiplicity 2 and the

corresponding eigenvectors are {eiπℓx, e−iπℓx} which is a basis for the eigenspace of λℓ. Let y = πx. So,

fℓ(x) =
eiℓy+e−iℓy

2 = cos(ℓy) is also an eigenvector for the eigenspace of λℓ. Thus, eiy+e−iy

2 = cos(y) is an

eigenvector for the eigenspace of λ1.

E(x) = fℓ(x)− Tℓ(f1(x))

= fℓ(x)− Tℓ(cos(y))

= fℓ(x)− cos(ℓy) = 0

□

4. Analysis of Robin Problem on [−1, 1]

4.1. Continuous Robin Problem with Uniformly Spaced Points.

Definition 4.1. Suppose u is an eigenfunction of the Laplacian Ln→∞,k=1 with corresponding eigenvalue

λ. The Robin Boundary Conditions are

u′′ = −λu on (−1, 1)

∂nu = ρu at x = ±1
(4.1)

where ∂n is the outward normal derivative at x = ±1.

Solving the differential equation u′′ = −λu gives the general solution for u, u(x) = Aeiπαx + Be−iπαx.

Thus, ∂nu(x) = sgn(x)iπα(Aeiπαx −Be−iπαx) at x = ±1.

For the boundary equations, when x = −1,

0 = ∂nu(−1)− ρu(−1) = (−1)iπα(Ae−iπα −Beiπα)− ρ(Ae−iπα +Beiπα)

= (−1)(e−iπα(iπα+ ρ)A− eiπα(iπα− ρ)B).

When x = 1,

0 = ∂nu(1)− ρu(1) = iπα(Aeiπα −Be−iπα)− ρ(Aeiπα +Be−iπα)

= eiπα(iπα− ρ)A− e−iπα(iπα+ ρ)B.

This is equivalent, e−iπα(iπα+ ρ) −eiπα(iπα− ρ)

eiπα(iπα− ρ) −e−iπα(iπα+ ρ)

A
B

 =

0
0

 .(4.2)
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To find nontrivial values for A and B, the determinant of the matrix need to be 0.

det

e−iπα(iπα+ ρ) −eiπα(iπα− ρ)

eiπα(iπα− ρ) −e−iπα(iπα+ ρ).


= −e−2iπα(iπα+ ρ)2 + e2iπα(iπα− ρ)2 = 0.

After some simplification,

e2iπα = ± iπα+ ρ

iπα− ρ
.(4.3)

Substituting iπα+ρ = e2iπα(iπα−ρ) into the matrix 4.2, we obtain the relationship for A and B: A = B.

Similarly, substituting iπα+ ρ = −e2iπα(iπα− ρ) into the matrix 4.2, we arrive at the relationship for A

and B: A = −B.

Then, the general equation for u is u = Aeiπαx ±Ae−iπαx. Since A can be any scalar multiple,

u = cos(παx) or u = sin(παx)

with value of α from the equation 4.3.

For the equation 4.3, we have a formula for ρ in terms of α,

ρ(α) = iπα
(±e2iπα − 1)

(±e2iπα + 1)
= iπα

(±eiπα − e−iπα)

(±eiπα + e−iπα)
=

−πα tan(πα), when u = cos(παx)

πα cot(πα), when u = sin(παx)
.(4.4)

(1) ρ(α) = 0.

−πα tan(πα) = 0 if and only if α = 0 or tan(πα) = 0 if and only if α ∈ Z. And, πα cot(πα) = 0

if and only if α = 0 or cot(πα) = 0 if and only if α ∈ Z + 1
2 . Therefore, ρ(α) = 0 if and only if

α ∈ c
2 , where c ∈ Z. Thus,

u =

sin(π c
2x), when c is odd

cos(π c
2x), when c is even

.

If c ≥ 1, then we have the eigenvectors,

u1(x) = sin(
1

2
πx)

u2(x) = cos(πx)

u3(x) = sin(
3

2
πx)

u4(x) = cos(2πx)

...

By Theorem 3.3, we know (u1(x), uj(x)) forms Chebyshev polynomials of the first kind.
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4.2. Discrete Robin Problem with Uniformly Spaced Points.

Definition 4.2. Suppose u is an eigenfunction of the Laplacian matrix Ln,k=1 of any variety with corre-

sponding eigenvalue λ. The Discrete Robin Boundary Conditions are

u′′ = −λu on (−1, 1)

Lu = σu at x = ±1
.(4.5)

We want to see how σ is related to ρ in the Robin Boundary Conditions 4.5.

4.3. Discrete Robin Problem on the Probabilistic Laplacian.

Definition 4.3. The Robin Boundary Conditions for the Probabilistic Laplacian areu′′ = −λu on (−1, 1)

Lprobu = σu at x = ±1
.(4.6)

Theorem 4.4. When n → ∞, σ → 0.

Proof. u(x) = Aeiπαx + Be−iπαx is the general form for eigenvectors of probabilistic Laplacian matrices,

Lprob. Suppose that the first row of Lprob is

Lprob(x0) =
(
1 −1 0 . . . 0

)
, and the last row is

Lprob(xn−1) =
(
0 . . . 0 −1 1

)
For the boundary equations, when x = −1,

0 = Lprobu(−1)− σu(−1) = Ae−iπα +Beiπα − (Aeiπα(−1+δ) +Be−iπα(−1+δ))− σ(Ae−iπα +Beiπα)

= ((1− σ)e−iπα − eiπα(−1+δ))A+ ((1− σ)eiπα − e−iπα(−1+δ))B

When x = 1,

0 = Lprobu(1)− σu(1) = Aeiπα +Be−iπα − (Aeiπα(1−δ) +Be−iπα(1−δ))− σ(Aeiπα +Be−iπα)

= ((1− σ)eiπα − eiπα(1−δ))A+ ((1− σ)e−iπα − e−iπα(1−δ))B

This is equivalent,(1− σ)e−iπα − eiπα(−1+δ) +(1− σ)eiπα − e−iπα(−1+δ)

(1− σ)eiπα − eiπα(1−δ) +(1− σ)e−iπα − e−iπα(1−δ)

A
B

 =

0
0

 .(4.7)
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To find nontrivial values for A and B, the determinant of the matrix need to be 0.

det

(1− σ)e−iπα − eiπα(−1+δ) +(1− σ)eiπα − e−iπα(−1+δ)

(1− σ)eiπα − eiπα(1−δ) +(1− σ)e−iπα − e−iπα(1−δ)


= ((1− σ)e−iπα − e−iπα(1−δ))2 − ((1− σ)eiπα − eiπα(1−δ))2 = 0.

After some simplification, we have (1− σ)e−iπα − e−iπα(1−δ) = ±((1− σ)eiπα − eiπα(1−δ))

(1) If (1− σ)e−iπα − e−iπα(1−δ) = (1− σ)eiπα − eiπα(1−δ), then

0 = −(1− σ)(eiπα − e−iπα) + (eiπα(1−δ) − e−iπα(1−δ))

= −(1− σ)2i sin(πα) + 2i sin(πα(1− δ)).

Completing the calculation, we get

lim
n→∞

σ = lim
n→∞

1− sin(πα(1− δ))

sin(πα)
= lim

n→∞
1− sin(πα)

sin(πα)
= lim

n→∞
1− 1 = 0.

(2) If (1− σ)e−iπα − e−iπα(1−δ) = −((1− σ)eiπα − eiπα(1−δ)), then

0 = (1− σ)(eiπα + e−iπα)− (eiπα(1−δ) + e−iπα(1−δ))

= (1− σ)2i cos(πα)− 2i cos(πα(1− δ)).

Completing the calculation, we get

lim
n→∞

σ = lim
n→∞

1− cos(πα(1− δ))

cos(πα)
= lim

n→∞
1− cos(πα)

cos(πα)
= lim

n→∞
1− 1 = 0.

□

Corollary 4.5. The eigencoordinates for the Lprob are the Chebyshev polynomials of the first kind, Tn.

Proof. Previous work on the continuous Laplacian shows that when ρ = 0, the eigencoordinates will be

exactly the Chebyshev polynomials. Hence, limn→∞ σ = 0 = ρ implies that the eigencoordinates for the

Probabilistic Laplacian matrix are the Chebyshev polynomials. □

4.4. Discrete Robin Problem on Regular Laplacian.

Corollary 4.6. The eigencoordinates for the Lreg are the Chebyshev polynomials of the first kind, Tn.

Proof. Since the boundaries of the Regular and Probabilistic Laplacians are the same we get the same re-

sult. limn→∞ σ = 0 implies that the eigencoordinates for the Regular Laplacian matrix are the Chebyshev

polynomials. □
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