Contents

1.	Glossary of Notation	1		
2.	Formula for Eigenvalues and Eigenfunctions	2		
2.1.	Finding Formula for Eigenvalues	2		
2.2.	Periodic Laplacian	3		
2.3.	Regular Laplacian	4		
2.4.	Probabilistic Laplacian	4		
3.	Eigencoordinates and Chebyshev Polynomials	5		
3.1.	Regular Laplacian and Chebyshev Polynomial	7		
3.2.	Probabilistic Laplacian and Chebyshev Polynomial	8		
3.3.	Periodic Laplacian and Chebyshev Polynomial	9		
4. Analysis of Robin Problem on $[-1, 1]$				
4.1.	Continuous Robin Problem with Uniformly Spaced Points	10		
4.2.	Discrete Robin Problem with Uniformly Spaced Points	12		
4.3.	Discrete Robin Problem on the Probabilistic Laplacian	12		
4.4.	Discrete Robin Problem on Regular Laplacian	13		

1. GLOSSARY OF NOTATION

The following are general notation used in the paper unless stated otherwise:

- The *j*th point: x_j
- $\bullet\,$ The number of chosen points: n
- The distance between equally spaced points: δ
- The number of points adjacent to x_j on one side: k
- Regular Laplacian: L
- Probabilistic Laplacian: \mathcal{L}
- Periodic Laplacian: $L^{\rm per}$

• $T_{\ell}(x)$ is the ℓ^{th} Chebyshev polynomial.

Note: All Laplacians in this document are for k = 1 unless stated otherwise.

2. Formula for Eigenvalues and Eigenfunctions

2.1. Finding Formula for Eigenvalues. The process of finding eigenvalues of the different Laplacian matrices follows a pattern resulting in the following, helpful lemma.

Lemma 1. Let L be a Laplacian matrix. If the middle n-2 rows are of the form

	-1	2	-1	0		•••	0
с	0	-1	2	-1	0		0
	÷			·			:
	0				-1	2	-1

then for a vector $f(x) = Ae^{i\pi\alpha x} + Be^{-i\pi\alpha x}$ to be an eigenvector, its corresponding eigenvalue λ must be $\lambda = 2c(1 - \cos(\pi\alpha\delta)).$

Proof. Let L be a Laplacian matrix of any variety. Suppose that for $1 \le j \le n-2$, the j-th row of L is

$$L(x_j) = c \begin{pmatrix} 0 & \dots & -1 & 2 & -1 & 0 & \dots & 0 \end{pmatrix}$$

where the 2 is at index j. If $f(x) = Ae^{i\pi\alpha x} + Be^{-i\pi\alpha x}$ is an eigenvector of L, we have that $L(Ae^{i\pi\alpha x} + Be^{-i\pi\alpha x}) = \lambda(Ae^{i\pi\alpha x} + Be^{-i\pi\alpha x})$ for some constant λ . In particular, for $1 \le j \le n-2$, $Lf(x_j) = \lambda f(x_j)$. Note that

$$Lf(x_{j}) = c(-f(x_{j-1}) + 2f(x_{j}) - f(x_{j+1})) = c(-f(x_{j} - \delta) + 2f(x_{j}) - f(x_{j} + \delta))$$

= $c(-(Ae^{i\pi\alpha(x_{j}-\delta)} + Be^{-i\pi\alpha(x_{j}-\delta)}) + 2(Ae^{i\pi\alpha x_{j}} + Be^{-i\pi\alpha x_{j}}) - (Ae^{i\pi\alpha(x_{j}+\delta)} + Be^{-i\pi\alpha(x_{j}+\delta)}))$
= $c(Ae^{i\pi\alpha x_{j}}(2 - e^{i\pi\alpha\delta} - e^{-i\pi\alpha\delta}) + Be^{-i\pi\alpha x_{j}}(2 - e^{i\pi\alpha\delta} - e^{-i\pi\alpha\delta}))$
= $2c(1 - \cos(\pi\alpha\delta))(Ae^{i\pi\alpha x_{j}} + Be^{-i\pi\alpha x_{j}}) = 2c(1 - \cos(\pi\alpha\delta))f(x_{j})$

Observe that the coefficient in equation $2c(1 - \cos(\pi \alpha \delta))$ is a constant which does not depend on x_j . Thus if f(x) is an eigenvector for L, its corresponding eigenvalue λ must be $\lambda = 2c(1 - \cos(\pi \alpha \delta))$.

We can verify this numerically. In Figure 2.1 we plot the eigenvalues of the Periodic Laplacian for n = 40and k = 1 and we plot the calculated eigenvalues and see that the graphs are qualitatively the same.

FIGURE 1. The red dots (left) represent the eigenvalues of L^{per} computed by Mathematica where n = 40 and k = 1. The blue dots (right) represent the eigenvalues of L^{per} computed from the formula $\lambda(\alpha) = 2 - 2\cos(\pi\alpha\delta)$ where $\alpha \in \{0, 1, ..., 39\}$ with values sorted numerically from smallest to largest.

2.2. Periodic Laplacian. For the Periodic Laplacian, we choose n points from a circle for ease of visualization. From there we project those points to the interval [-1, 1] which requires us to choose n points where $x_0 = -1$ and $x_{n-1} = 1$.

Theorem 2.1. The function $f(x) = e^{i\pi\alpha x}$, $\alpha \in \mathbb{Z}$ is an eigenfunction for the Periodic Laplacian.

Proof. Consider the periodic Laplacian, L^{per} , in this case given by,

(2.1)
$$L_{j,m}^{\text{per}} = \begin{cases} 2 \quad j = m \\ 1 \quad m = j \pm 1 \pmod{n} \\ 0 \quad \text{otherwise.} \end{cases}$$

Note: We define $f(x_0) = f(x_{n-1})$ for the Periodic Laplacian. Applying Lemma 1:

$$L^{\operatorname{per}}f(x_j) = \sum_{m=0}^{n-1} L^{\operatorname{per}}_{j,m}f(x_m) = \lambda f(x_j),$$

we obtain an eigenvalue of $\lambda = 2(1 - \cos(\pi \alpha \delta))$.

Notice from our interval [-1, 1], we have $x_0 = -1$ and $x_{n-1} = 1$. By definition we know that $f(x_0) = f(x_{n-1}) \implies e^{-i\pi\alpha} = e^{i\pi\alpha}$. This can only hold for $\alpha \in \mathbb{Z}$. When $\alpha \in \mathbb{Z}$, we see from the General Form for Eigenvalues proof that

$$Lf = \lambda f$$

as needed.

2.3. Regular Laplacian. For the Regular Laplacian we consider the function $f(x) = Ae^{i\pi\alpha x} + Be^{-i\pi\alpha x}$.

Theorem 2.2. Eigenvalues of L are of the form $\lambda = 2(1 - \cos(\pi \alpha \delta))$.

Proof. $L(x_j) = 1 \begin{pmatrix} 0 & \dots & -1 & 2 & -1 & 0 & \dots & 0 \end{pmatrix}$ where c = 1. By Lemma 1 the corresponding eigenvalue is $\lambda = 2(1 - \cos(\pi \alpha \delta))$.

Finding the eigenvalue is done using the internal points. We next consider the end points where j = 0and j = n - 1 in order to solve for α, A, B in f(x).

Theorem 2.3. $\alpha = \frac{c}{\delta+2}$ where $c \in \mathbb{Z}$, $A = \pm B$ so eigenvectors are of the form $f(x) = \cos(\pi \alpha x)$ (with c even) or $\sin(\pi \alpha x)$ (with c odd).

Proof. Consider the end points where j = 0 and j = n - 1. Then,

(2.2)
$$Lf(-1) = Ae^{i\pi\alpha(-1)} + Be^{-i\pi\alpha(-1)} - (Ae^{i\pi\alpha(-1+\delta)} + Be^{-i\pi\alpha(-1+\delta)})$$

(2.3)
$$Lf(1) = Ae^{i\pi\alpha(1)} + Be^{-i\pi\alpha(1)} - (Ae^{i\pi\alpha(1-\delta)} + Be^{-i\pi\alpha(1-\delta)})$$

We need $Lf(-1) = \lambda f(-1)$ and $Lf(1) = \lambda f(1)$. We can set up the system of equations to be

(2.4)
$$Ae^{-i\pi\alpha}(e^{-i\pi\alpha\delta} - 1) + Be^{i\pi\alpha}(e^{i\pi\alpha\delta} - 1) = 0$$

(2.5)
$$Ae^{i\pi\alpha}(e^{i\pi\alpha\delta} - 1) + Be^{-i\pi\alpha}(e^{-i\pi\alpha\delta} - 1) = 0$$

This is, equivalently,

(2.6)
$$e^{-i\pi\alpha}(e^{-i\pi\alpha\delta} - 1) \begin{bmatrix} 1 & -e^{i\pi\alpha(2+\delta)} \\ -e^{i\pi\alpha(2+\delta)} & 1 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

For $\begin{bmatrix} A \\ B \end{bmatrix}$ to be non-trivial (that is, not the zero vector), the matrix $\mathbf{M} = \begin{bmatrix} 1 & -e^{i\pi\alpha(2+\delta)} \\ -e^{i\pi\alpha(2+\delta)} & 1 \end{bmatrix}$ must be singular. Thus, we can find α when det $(\mathbf{M}) = \mathbf{0}$. Completing this calculation gives us $\alpha = \frac{c}{\delta+2}$ where $c \in \mathbb{Z}$. When we plug in α into \mathbf{M} we find that $A = (-1)^c B$.

2.4. Probabilistic Laplacian. For the Probabilistic Laplacian we consider functions of the form

$$f(x) = Ae^{i\pi\alpha x} + Be^{-i\pi\alpha x}$$

Theorem 2.4. Eigenvalues of \mathcal{L} are of the form $\lambda = 1 - \cos(\pi \alpha \delta)$.

Proof. For x_j with 0 < j < n-1, $\mathcal{L}(x_j) = \frac{1}{2} \begin{pmatrix} 0 & \dots & -1 & 2 & -1 & 0 & \dots & 0 \end{pmatrix}$ where $c = \frac{1}{2}$. By Lemma 1 the corresponding eigenvalue is $\lambda = 1 - \cos(\pi \alpha \delta)$.

Finding the eigenvalue is done using the internal points (i.e. x_j with 0 < j < n - 1). We next consider the endpoints where j = 0 and j = n - 1 in order to solve for α, A, B in f(x).

Theorem 2.5. $\alpha = \frac{c}{2}$ for $c \in \mathbb{Z}$, and $A = \pm B$. Thus eigenvectors of $\mathcal{L}_{n,1}$ are of the form $2A\cos(\pi\alpha x)$ (with c even) or $2Ai\sin(\pi\alpha x)$ (with c odd).

Proof. Consider the endpoints $x_0 = -1$ and $x_{n-1} = 1$. Then we have that

(2.7)
$$\mathcal{L}f(-1) = Ae^{-i\pi\alpha} + Be^{i\pi\alpha} - (Ae^{i\pi\alpha(\delta-1)} + Be^{-i\pi\alpha(\delta-1)})$$

(2.8)
$$\mathcal{L}f(1) = Ae^{i\pi\alpha} + Be^{-i\pi\alpha} - (Ae^{i\pi\alpha(1-\delta)} + Be^{-i\pi\alpha(1-\delta)})$$

Since we want $\mathcal{L}f = \lambda f$, by 3.8 and 3.9, we have that

$$Ae^{-i\pi\alpha} + Be^{i\pi\alpha} - (Ae^{i\pi\alpha(\delta-1)} + Be^{-i\pi\alpha(\delta-1)}) = \frac{1}{2}(2 - e^{i\pi\alpha\delta} - e^{-i\pi\alpha\delta})(Ae^{-i\pi\alpha} + Be^{i\pi\alpha})$$
$$Ae^{i\pi\alpha} + Be^{-i\pi\alpha} - (Ae^{i\pi\alpha(1-\delta)} + Be^{-i\pi\alpha(1-\delta)}) = \frac{1}{2}(2 - e^{i\pi\alpha\delta} - e^{-i\pi\alpha\delta})(Ae^{i\pi\alpha} + Be^{-i\pi\alpha})$$

Equivalently,

$$\begin{bmatrix} -\frac{1}{2}e^{-i\pi\alpha(\delta+1)}\left(-1+e^{2i\pi\alpha\delta}\right) & \frac{1}{2}e^{-i\pi\alpha(\delta-1)}\left(-1+e^{2i\pi\alpha\delta}\right) \\ \frac{1}{2}e^{-i\pi\alpha(\delta-1)}\left(-1+e^{2i\pi\alpha\delta}\right) & -\frac{1}{2}e^{-i\pi\alpha(\delta+1)}\left(-1+e^{2i\pi\alpha\delta}\right) \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Factoring out the entry along the diagonal, we have

$$-\frac{1}{2}e^{-i\pi\alpha(\delta+1)}\left(-1+e^{2i\pi\alpha\delta}\right)\begin{bmatrix}1&-e^{2i\pi\alpha}\\-e^{2i\pi\alpha}&1\end{bmatrix}\begin{bmatrix}A\\B\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}$$

We want to find a non-trivial solution for A, B. Then $\mathbf{M} = \begin{bmatrix} 1 & -e^{2i\pi\alpha} \\ -e^{2i\pi\alpha} & 1 \end{bmatrix}$ must be a singular matrix. So we can solve for α by fixing det(\mathbf{M}) = 0. Completing this calculation yields $\alpha = \frac{c}{2}$ for $c \in \mathbb{Z}$. Using this, we can solve for A = B (for even c) or A = -B (for odd c). Thus, the eigenvectors of \mathcal{L} are of the form $A(e^{i\pi\frac{c}{2}x} + e^{-i\pi\frac{c}{2}x})$ and $A(e^{-i\pi\frac{c}{2}} - e^{-i\pi\frac{c}{2}})$, or equivalently, $2A\cos(\pi\frac{c}{2}x)$ for even c or $2Ai\sin(\pi\frac{c}{2}x)$ for odd c. Normalizing, we find that $f(x) = \cos(\pi\frac{c}{2}x)$ if c is even and $\sin(\pi\frac{c}{2}x)$ if c is odd since A can be any scalar multiple.

3. Eigencoordinates and Chebyshev Polynomials

Definition 3.1. The Chebyshev Polynomials of the first kind T_n are defined by $T_n(\cos(\theta)) = \cos(n\theta)$.

The following is the recursive definition for Chebyshev Polynomials of the first kind.

GRAPH LAPLACAINS, EIGEN-COORDINATES, CHEBYSHEV POLYNOMIALS, AND ROBIN PROBLEMS UCONN MATH **Definition 3.2.** The Chebyshev polynomials of the first kind are defined by the recurrence relation.

$$T_0(x) = 1$$

$$T_1(x) = x$$

$$\vdots$$

$$T_{\ell+1}(x) = 2xT_{\ell}(x) - T_{\ell-1}(x)$$

Suppose L is a Laplacian matrix and f_1 and f_ℓ are the eigenfunctions corresponding to the first and ℓ^{th} smallest eigenvalues of L. The eigencoordinates are $(f_1(x), f_\ell(x))$. We want to investigate the error, E, between our eigencoordinates and the Chebyshev polynomial T_ℓ . The error can be obtained from the following equation

(3.1)
$$E(x) = f_{\ell}(x) - T_{\ell}(f_1(x)).$$

Previously the input of the Chebyshev polynomials is $\cos(y)$, we want to investigate the Chebyshev polynomials with input $\sin(y)$. Following is a lemma for the formula of the $T_{\ell}(\sin(y))$.

Theorem 3.3.

$$T_{\ell}(\sin(y)) = \frac{i^{-\ell}}{2} (e^{i\ell y} + (-1)^{\ell} e^{-i\ell y}).$$

Proof. We will use induction for the proof.

Base Case: When $\ell = 0$, $T_0(\sin(y)) = \frac{1}{2}(e^0 + e^0) = 1$. When $\ell = 1$, $T_1(\sin(y)) = \frac{1}{2i}(e^{iy} - e^{-iy}) = \frac{1}{2i}2i\sin(\ell y) = \sin(\ell y)$. **Induction:** Suppose that $T_\ell(\sin(y)) = \frac{i^{-\ell}}{2}(e^{i\ell y} + (-1)^\ell e^{-i\ell y})$. We want to show that $T_{\ell+1}(\sin(y)) = \frac{i^{-\ell}}{2}(e^{i\ell y} + (-1)^\ell e^{-i\ell y})$.

$$\frac{i^{-(\ell+1)}}{2}(e^{i(\ell+1)y} + (-1)^{\ell+1}e^{-i(\ell+1)y}).$$

According to the Definition 3.2, we know that

$$\begin{split} T_{\ell+1}(\sin(y)) &= 2\sin(y)T_{\ell}(\sin(y)) - T_{\ell-1}(\sin(y)) \\ &= 2\sin(y)\frac{i^{-\ell}}{2}(e^{i\ell y} + (-1)^{\ell}e^{-i\ell y}) - \frac{i^{-(\ell-1)}}{2}(e^{i(\ell-1)y} + (-1)^{\ell-1}e^{-i(\ell-1)y}) \\ &= \frac{i^{-(l+1)}}{2}(2\frac{(e^{iy} - e^{-iy})}{2i}i(e^{i\ell y} + (-1)^{\ell}e^{-i\ell y}) - i^{2}(e^{i(\ell-1)y} + (-1)^{\ell-1}e^{-i(\ell-1)y})) \\ &= \frac{i^{-(l+1)}}{2}((e^{iy} - e^{-iy})(e^{i\ell y} + (-1)^{\ell}e^{-i\ell y}) + (e^{i(\ell-1)y} + (-1)^{\ell-1}e^{-i(\ell-1)y})) \\ &= \frac{i^{-(l+1)}}{2}(e^{i(\ell+1)y} + (-1)^{\ell}e^{-i(\ell-1)y} - e^{i(\ell-1)y} + (-1)^{\ell+1}e^{-i(\ell+1)y} + e^{i(\ell-1)y} + (-1)^{\ell-1}e^{-i(\ell-1)y}) \\ &= \frac{i^{-(\ell+1)}}{2}(e^{i(\ell+1)y} + (-1)^{\ell+1}e^{-i(\ell+1)y}) \end{split}$$

Thus, we can conclude that

$$T_{\ell}(\sin(y)) = \frac{i^{-\ell}}{2} (e^{i\ell y} + (-1)^{\ell} e^{-i\ell y}).$$

The following are the first few Chebyshev polynomials of sin(y)

 $T_0(\sin(y)) = 1$ $T_1(\sin(y)) = \sin(y)$ $T_2(\sin(y)) = -\cos(2y)$ $T_3(\sin(y)) = -\sin(3y)$ $T_4(\sin(y)) = \cos(4y)$ $T_5(\sin(y)) = \sin(5y)$ \vdots

3.1. Regular Laplacian and Chebyshev Polynomial. Suppose L is a regular Laplacian matrix with k = 1. We want to investigate the correlation between eigencoordinates and $T_{\ell}(\sin(y))$. According to Theorem 2.3, we know the eigenfunctions of L are $\cos(c\pi \frac{n-1}{2n}x)$ if c is even and $\sin(c\pi \frac{n-1}{2n}x)$ if c is odd, where c is an integer from 0 to n-1.

Corollary 3.4. $E(x) = f_{\ell}(x) - T_{\ell}(f_1(x)) = 0$ for the regular Laplacian matrix.

Proof. Suppose ℓ is even. Then, $f_{\ell}(x) = \cos(\ell \pi \frac{n-1}{2n}x)$. Let $y = \pi \frac{n-1}{2n}x$. We also know $-\cos(\ell y)$ is an eigenfunction corresponding to the ℓ^{th} smallest eigenvalue because it is a scalar multiple of $f_{\ell}(x)$. Notice that $f_1(x) = \sin(\pi \frac{n-1}{2n}x) = \sin(y)$. Then, we have

$$E(x) = f_{\ell}(x) - T_{\ell}(\sin(y))$$

According to the lemma 3.3,

$$\begin{split} E(x) &= f_{\ell}(x) - T_{\ell}(\sin(y)) \\ &= f_{\ell}(x) - \frac{i^{-\ell}}{2} (e^{i\ell y} + (-1)^{\ell} e^{-i\ell y}) \\ &= \begin{cases} f_{\ell}(x) - \frac{1}{2} (e^{i\ell y} + e^{-i\ell y}), \text{ if } \ell \mod 4 = 0 \\ f_{\ell}(x) + \frac{1}{2} (e^{i\ell y} + e^{-i\ell y}), \text{ if } \ell \mod 4 = 2 \end{cases} \\ &= \begin{cases} f_{\ell}(x) - \cos(\ell y), \text{ if } \ell \mod 4 = 0 \\ f_{\ell}(x) + \cos(\ell y), \text{ if } \ell \mod 4 = 2 \end{cases} \end{split}$$

Since f_{ℓ} can be either $\pm \cos(\ell y)$, we can conclude that $E(x) = f_{\ell}(x) - T_{\ell}(\sin(y)) = 0$.

Suppose ℓ is odd. Then, $f_{\ell}(x) = \sin(\ell \pi \frac{n-1}{2n}x)$. Let $y = \pi \frac{n-1}{2n}x$. We also know $-\sin(\ell y)$ is an eigenfunction corresponding to the ℓ^{th} smallest eigenvalue because it is a scalar multiple of $f_{\ell}(x)$. Notice that $f_1(x) = \sin(\pi \frac{n-1}{2n}x) = \sin(y)$. Then, we have

$$E(x) = f_{\ell}(x) - T_{\ell}(\sin(y))$$

According to the Theorem 3.3,

$$E(x) = f_{\ell}(x) - T_{\ell}(\sin(y))$$

= $f_{\ell}(x) - \frac{i^{-\ell}}{2}(e^{i\ell y} + (-1)^{\ell}e^{-i\ell y})$
= $\begin{cases} f_{\ell}(x) - \frac{1}{2i}(e^{i\ell y} - e^{-i\ell y}), & \text{if } \ell \mod 4 = 1 \\ f_{\ell}(x) + \frac{1}{2i}(e^{i\ell y} + e^{-i\ell y}), & \text{if } \ell \mod 4 = 3 \end{cases}$
= $\begin{cases} f_{\ell}(x) - \sin(\ell y), & \text{if } \ell \mod 4 = 1 \\ f_{\ell}(x) + \sin(\ell y), & \text{if } \ell \mod 4 = 3 \end{cases}$

Since f_{ℓ} can be either $\pm \sin(\ell y)$, we can conclude that $E(x) = f_{\ell}(x) - T_{\ell}(\sin(y)) = 0$.

3.2. Probabilistic Laplacian and Chebyshev Polynomial. Suppose \mathcal{L} is a probabilistic Laplacian matrix with k = 1. We want to investigate the correlation between eigencoordinates and $T_{\ell}(\sin(y))$. According to Theorem 2.5, we know the eigenfunctions of $L_{n,1}$ are $\cos(\frac{c\pi x}{2})$ if c is even and $\sin(\frac{c\pi x}{2})$ if c is odd, where c is an integer from 0 to n-1.

Corollary 3.5. $E(x) = f_{\ell}(x) - T_{\ell}(f_1(x)) = 0$ for the probabilistic Laplacian matrix.

Proof. Suppose ℓ is even. Then, $f_{\ell}(x) = \cos(\frac{\ell \pi x}{2})$. Let $y = \frac{\pi x}{2}$. We also know $-\cos(\ell y)$ is an eigenfunction corresponding to the ℓ^{th} smallest eigenvalue because it is a scalar multiple of $f_{\ell}(x)$. Notice that $f_1(x) = \sin(\frac{\pi x}{2}) = \sin(y)$. Then, we have

$$E(x) = f_{\ell}(x) - T_{\ell}(\sin(y))$$

According to the Theorem 3.3,

$$E(x) = f_{\ell}(x) - T_{\ell}(\sin(y))$$

= $f_{\ell}(x) - \frac{i^{-\ell}}{2}(e^{i\ell y} + (-1)^{\ell}e^{-i\ell y})$
= $f_{\ell}(x) \pm \frac{1}{2}(e^{i\ell y} + e^{-i\ell y})$
= $\begin{cases} f_{\ell}(x) - \cos(\ell y), & \text{if } \ell \mod 4 = 0\\ f_{\ell}(x) + \cos(\ell y), & \text{if } \ell \mod 4 = 2 \end{cases}$

Since f_{ℓ} can be either $\pm \cos(\ell y)$, we can conclude that $E(x) = f_{\ell}(x) - T_{\ell}(\sin(y)) = 0$.

Suppose ℓ is odd. Then, $f_{\ell}(x) = \sin(\frac{\ell \pi x}{2})$. Let $y = \frac{\pi x}{2}$. We also know $-\sin(\ell y)$ is an eigenfunction corresponding to the ℓ^{th} smallest eigenvalue because it is a scalar multiple of $f_{\ell}(x)$. Notice that $f_1(x) = \sin(\frac{\pi x}{2}) = \sin(y)$. Then, we have

$$E(x) = f_{\ell}(x) - T_{\ell}(\sin(y))$$

According to the Theorem 3.3,

$$E(x) = f_{\ell}(x) - T_{\ell}(\sin(y))$$

= $f_{\ell}(x) - \frac{i^{-\ell}}{2}(e^{i\ell y} + (-1)^{\ell}e^{-i\ell y})$
= $\begin{cases} f_{\ell}(x) - \frac{1}{2i}(e^{i\ell y} - e^{-i\ell y}), \text{ if } \ell \mod 4 = 1\\ f_{\ell}(x) + \frac{1}{2i}(e^{i\ell y} + e^{-i\ell y}), \text{ if } \ell \mod 4 = 3 \end{cases}$
= $\begin{cases} f_{\ell}(x) - \sin(\ell y), \text{ if } \ell \mod 4 = 1\\ f_{\ell}(x) + \sin(\ell y), \text{ if } \ell \mod 4 = 3 \end{cases}$

Since f_{ℓ} can be either $\pm \sin(\ell y)$, we can conclude that $E(x) = f_{\ell}(x) - T_{\ell}(\sin(y)) = 0$.

3.3. Periodic Laplacian and Chebyshev Polynomial.

Theorem 3.6. Assume that $f_1(x)$ is the eigenfunction corresponding to the 1st non-zero eigenvalue λ_1 of L^{per} and $f_{\ell}(x)$ is the ℓ^{th} eigenfunction corresponding to the ℓ^{th} eigenvalue λ_{ℓ} of L^{per} , $f_{\ell}(x) = T_{\ell}(x)$.

Proof. From Theorem 2.1 an eigenvector of L^{per} is of the form $e^{i\pi\ell x}$. λ_{ℓ} has multiplicity 2 and the corresponding eigenvectors are $\{e^{i\pi\ell x}, e^{-i\pi\ell x}\}$ which is a basis for the eigenspace of λ_{ℓ} . Let $y = \pi x$. So, $f_{\ell}(x) = \frac{e^{i\ell y} + e^{-i\ell y}}{2} = \cos(\ell y)$ is also an eigenvector for the eigenspace of λ_{ℓ} . Thus, $\frac{e^{iy} + e^{-iy}}{2} = \cos(y)$ is an eigenvector for the eigenspace of λ_{1} .

$$E(x) = f_{\ell}(x) - T_{\ell}(f_1(x))$$
$$= f_{\ell}(x) - T_{\ell}(\cos(y))$$
$$= f_{\ell}(x) - \cos(\ell y) = 0$$

4. Analysis of Robin Problem on [-1, 1]

4.1. Continuous Robin Problem with Uniformly Spaced Points.

Definition 4.1. Suppose u is an eigenfunction of the Laplacian $L_{n\to\infty,k=1}$ with corresponding eigenvalue λ . The Robin Boundary Conditions are

(4.1)
$$\begin{cases} u'' = -\lambda u & on \ (-1, 1) \\ \partial_n u = \rho u & at \ x = \pm 1 \end{cases}$$

where ∂_n is the outward normal derivative at $x = \pm 1$.

Solving the differential equation $u'' = -\lambda u$ gives the general solution for u, $u(x) = Ae^{i\pi\alpha x} + Be^{-i\pi\alpha x}$. Thus, $\partial_n u(x) = sgn(x)i\pi\alpha(Ae^{i\pi\alpha x} - Be^{-i\pi\alpha x})$ at $x = \pm 1$.

For the boundary equations, when x = -1,

$$0 = \partial_n u(-1) - \rho u(-1) = (-1)i\pi\alpha (Ae^{-i\pi\alpha} - Be^{i\pi\alpha}) - \rho (Ae^{-i\pi\alpha} + Be^{i\pi\alpha})$$
$$= (-1)(e^{-i\pi\alpha}(i\pi\alpha + \rho)A - e^{i\pi\alpha}(i\pi\alpha - \rho)B).$$

When x = 1,

$$0 = \partial_n u(1) - \rho u(1) = i\pi\alpha (Ae^{i\pi\alpha} - Be^{-i\pi\alpha}) - \rho (Ae^{i\pi\alpha} + Be^{-i\pi\alpha})$$
$$= e^{i\pi\alpha} (i\pi\alpha - \rho)A - e^{-i\pi\alpha} (i\pi\alpha + \rho)B.$$

This is equivalent,

(4.2)
$$\begin{bmatrix} e^{-i\pi\alpha}(i\pi\alpha+\rho) & -e^{i\pi\alpha}(i\pi\alpha-\rho) \\ e^{i\pi\alpha}(i\pi\alpha-\rho) & -e^{-i\pi\alpha}(i\pi\alpha+\rho) \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

To find nontrivial values for A and B, the determinant of the matrix need to be 0.

$$\det \begin{bmatrix} e^{-i\pi\alpha}(i\pi\alpha+\rho) & -e^{i\pi\alpha}(i\pi\alpha-\rho) \\ e^{i\pi\alpha}(i\pi\alpha-\rho) & -e^{-i\pi\alpha}(i\pi\alpha+\rho). \end{bmatrix}$$
$$= -e^{-2i\pi\alpha}(i\pi\alpha+\rho)^2 + e^{2i\pi\alpha}(i\pi\alpha-\rho)^2 = 0.$$

After some simplification,

(4.3)
$$e^{2i\pi\alpha} = \pm \frac{i\pi\alpha + \rho}{i\pi\alpha - \rho}.$$

Substituting $i\pi\alpha + \rho = e^{2i\pi\alpha}(i\pi\alpha - \rho)$ into the matrix 4.2, we obtain the relationship for A and B: A = B. Similarly, substituting $i\pi\alpha + \rho = -e^{2i\pi\alpha}(i\pi\alpha - \rho)$ into the matrix 4.2, we arrive at the relationship for A and B: A = -B.

Then, the general equation for u is $u = Ae^{i\pi\alpha x} \pm Ae^{-i\pi\alpha x}$. Since A can be any scalar multiple,

$$u = \cos(\pi \alpha x)$$
 or $u = \sin(\pi \alpha x)$

with value of α from the equation 4.3.

For the equation 4.3, we have a formula for ρ in terms of α ,

(4.4)
$$\rho(\alpha) = i\pi\alpha \frac{(\pm e^{2i\pi\alpha} - 1)}{(\pm e^{2i\pi\alpha} + 1)} = i\pi\alpha \frac{(\pm e^{i\pi\alpha} - e^{-i\pi\alpha})}{(\pm e^{i\pi\alpha} + e^{-i\pi\alpha})} = \begin{cases} -\pi\alpha \tan(\pi\alpha), & \text{when } u = \cos(\pi\alpha x) \\ \pi\alpha \cot(\pi\alpha), & \text{when } u = \sin(\pi\alpha x) \end{cases}$$

(1) $\rho(\alpha) = 0.$

 $-\pi\alpha \tan(\pi\alpha) = 0$ if and only if $\alpha = 0$ or $\tan(\pi\alpha) = 0$ if and only if $\alpha \in \mathbb{Z}$. And, $\pi\alpha \cot(\pi\alpha) = 0$ if and only if $\alpha = 0$ or $\cot(\pi\alpha) = 0$ if and only if $\alpha \in \mathbb{Z} + \frac{1}{2}$. Therefore, $\rho(\alpha) = 0$ if and only if $\alpha \in \frac{c}{2}$, where $c \in \mathbb{Z}$. Thus,

$$u = \begin{cases} \sin(\pi \frac{c}{2}x), & \text{when } c \text{ is odd} \\ \cos(\pi \frac{c}{2}x), & \text{when } c \text{ is even} \end{cases}$$

If $c \geq 1$, then we have the eigenvectors,

$$u_1(x) = \sin(\frac{1}{2}\pi x)$$
$$u_2(x) = \cos(\pi x)$$
$$u_3(x) = \sin(\frac{3}{2}\pi x)$$
$$u_4(x) = \cos(2\pi x)$$
$$\vdots$$

By Theorem 3.3, we know $(u_1(x), u_j(x))$ forms Chebyshev polynomials of the first kind.

4.2. Discrete Robin Problem with Uniformly Spaced Points.

Definition 4.2. Suppose u is an eigenfunction of the Laplacian matrix $L_{n,k=1}$ of any variety with corresponding eigenvalue λ . The Discrete Robin Boundary Conditions are

(4.5)
$$\begin{cases} u'' = -\lambda u & on (-1,1) \\ Lu = \sigma u & at \ x = \pm 1 \end{cases}.$$

We want to see how σ is related to ρ in the Robin Boundary Conditions 4.5.

4.3. Discrete Robin Problem on the Probabilistic Laplacian.

Definition 4.3. The Robin Boundary Conditions for the Probabilistic Laplacian are

(4.6)
$$\begin{cases} u'' = -\lambda u & on \ (-1, 1) \\ L_{prob}u = \sigma u & at \ x = \pm 1 \end{cases}$$

Theorem 4.4. When $n \to \infty$, $\sigma \to 0$.

Proof. $u(x) = Ae^{i\pi\alpha x} + Be^{-i\pi\alpha x}$ is the general form for eigenvectors of probabilistic Laplacian matrices, L_{prob} . Suppose that the first row of L_{prob} is

$$L_{prob}(x_0) = \begin{pmatrix} 1 & -1 & 0 & \dots & 0 \end{pmatrix}$$

, and the last row is

$$L_{prob}(x_{n-1}) = \begin{pmatrix} 0 & \dots & 0 & -1 & 1 \end{pmatrix}$$

For the boundary equations, when x = -1,

$$0 = L_{prob}u(-1) - \sigma u(-1) = Ae^{-i\pi\alpha} + Be^{i\pi\alpha} - (Ae^{i\pi\alpha(-1+\delta)} + Be^{-i\pi\alpha(-1+\delta)}) - \sigma(Ae^{-i\pi\alpha} + Be^{i\pi\alpha})$$
$$= ((1-\sigma)e^{-i\pi\alpha} - e^{i\pi\alpha(-1+\delta)})A + ((1-\sigma)e^{i\pi\alpha} - e^{-i\pi\alpha(-1+\delta)})B$$

When x = 1,

$$0 = L_{prob}u(1) - \sigma u(1) = Ae^{i\pi\alpha} + Be^{-i\pi\alpha} - (Ae^{i\pi\alpha(1-\delta)} + Be^{-i\pi\alpha(1-\delta)}) - \sigma(Ae^{i\pi\alpha} + Be^{-i\pi\alpha})$$
$$= ((1-\sigma)e^{i\pi\alpha} - e^{i\pi\alpha(1-\delta)})A + ((1-\sigma)e^{-i\pi\alpha} - e^{-i\pi\alpha(1-\delta)})B$$

This is equivalent,

(4.7)
$$\begin{bmatrix} (1-\sigma)e^{-i\pi\alpha} - e^{i\pi\alpha(-1+\delta)} & +(1-\sigma)e^{i\pi\alpha} - e^{-i\pi\alpha(-1+\delta)} \\ (1-\sigma)e^{i\pi\alpha} - e^{i\pi\alpha(1-\delta)} & +(1-\sigma)e^{-i\pi\alpha} - e^{-i\pi\alpha(1-\delta)} \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

To find nontrivial values for A and B, the determinant of the matrix need to be 0.

$$\det \begin{bmatrix} (1-\sigma)e^{-i\pi\alpha} - e^{i\pi\alpha(-1+\delta)} & +(1-\sigma)e^{i\pi\alpha} - e^{-i\pi\alpha(-1+\delta)} \\ (1-\sigma)e^{i\pi\alpha} - e^{i\pi\alpha(1-\delta)} & +(1-\sigma)e^{-i\pi\alpha} - e^{-i\pi\alpha(1-\delta)} \end{bmatrix}$$
$$= ((1-\sigma)e^{-i\pi\alpha} - e^{-i\pi\alpha(1-\delta)})^2 - ((1-\sigma)e^{i\pi\alpha} - e^{i\pi\alpha(1-\delta)})^2 = 0.$$

After some simplification, we have $(1 - \sigma)e^{-i\pi\alpha} - e^{-i\pi\alpha(1-\delta)} = \pm((1 - \sigma)e^{i\pi\alpha} - e^{i\pi\alpha(1-\delta)})$

(1) If
$$(1 - \sigma)e^{-i\pi\alpha} - e^{-i\pi\alpha(1-\delta)} = (1 - \sigma)e^{i\pi\alpha} - e^{i\pi\alpha(1-\delta)}$$
, then

$$0 = -(1 - \sigma)(e^{i\pi\alpha} - e^{-i\pi\alpha}) + (e^{i\pi\alpha(1-\delta)} - e^{-i\pi\alpha(1-\delta)})$$

$$= -(1 - \sigma)2i\sin(\pi\alpha) + 2i\sin(\pi\alpha(1-\delta)).$$

Completing the calculation, we get

$$\lim_{n \to \infty} \sigma = \lim_{n \to \infty} 1 - \frac{\sin(\pi\alpha(1-\delta))}{\sin(\pi\alpha)} = \lim_{n \to \infty} 1 - \frac{\sin(\pi\alpha)}{\sin(\pi\alpha)} = \lim_{n \to \infty} 1 - 1 = 0.$$
(2) If $(1-\sigma)e^{-i\pi\alpha} - e^{-i\pi\alpha(1-\delta)} = -((1-\sigma)e^{i\pi\alpha} - e^{i\pi\alpha(1-\delta)})$, then
$$0 = (1-\sigma)(e^{i\pi\alpha} + e^{-i\pi\alpha}) - (e^{i\pi\alpha(1-\delta)} + e^{-i\pi\alpha(1-\delta)})$$

$$= (1-\sigma)2i\cos(\pi\alpha) - 2i\cos(\pi\alpha(1-\delta)).$$

Completing the calculation, we get

$$\lim_{n \to \infty} \sigma = \lim_{n \to \infty} 1 - \frac{\cos(\pi \alpha (1 - \delta))}{\cos(\pi \alpha)} = \lim_{n \to \infty} 1 - \frac{\cos(\pi \alpha)}{\cos(\pi \alpha)} = \lim_{n \to \infty} 1 - 1 = 0.$$

Corollary 4.5. The eigencoordinates for the L_{prob} are the Chebyshev polynomials of the first kind, T_n .

Proof. Previous work on the continuous Laplacian shows that when $\rho = 0$, the eigencoordinates will be exactly the Chebyshev polynomials. Hence, $\lim_{n\to\infty} \sigma = 0 = \rho$ implies that the eigencoordinates for the Probabilistic Laplacian matrix are the Chebyshev polynomials.

4.4. Discrete Robin Problem on Regular Laplacian.

Corollary 4.6. The eigencoordinates for the L_{req} are the Chebyshev polynomials of the first kind, T_n .

Proof. Since the boundaries of the Regular and Probabilistic Laplacians are the same we get the same result. $\lim_{n\to\infty} \sigma = 0$ implies that the eigencoordinates for the Regular Laplacian matrix are the Chebyshev polynomials.