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Abstract
The standard method of deriving the Black-Scholes European call option pricing formula involves stochastic dif-

ferential equations. In this project we provide an alternate derivation using the Lindeberg-Feller central limit theorem
under some technical assumptions. This method allows us obtain the Black-Scholes formula using undergraduate
probability. Theoretical results are supplemented with market simulations.

Introduction
A financial option is a contract that gives the option holder the right to buy or sell an asset for a certain
price, called the strike price. The specific type of option we studied was the European call option. It
entitles the holder to purchase a unit of the underlying asset for a certain strike price at a pre-determined
expiration time. The Black-Scholes model was proposed by Fischer Black and Myron Scholes in their
1973 paper entitled “The Pricing of Options and Corporate Liabilities,” in which they derived a formula
for the value of a “European-style” option in terms of the price of the stock. We consider an alternative
approach to the derivation of the Black-Scholes European call option pricing formula using the central
limit theorem. We utilize the Lindeberg-Feller Central Limit Theorem which states:

Theorem 1. Suppose for each n and i = 1, . . . n, Xni are independent and have mean 0. Let
Sn =

∑n
i=1Xni. Suppose that

∑n
i=1 E[X2

ni] → σ2 for 0 < σ2 < ∞. Then, the following two
conditions are equivalent:

1. Sn converges weakly to a normal random variable with mean 0 and variance σ2, and the triangular
array

{
Xnj

}
satisfies the condition that

lim
n→0

max
i

E
[
X2
ni

]
= 0.

2. (Lindeberg Condition) For all ε > 0,

n∑
i=1

E
[
X2
ni; |Xni| > ε

]
→ 0.

The Black Scholes Formula
The Black-Scholes European option pricing model is written,

C = X0N(d+)−Ke−rtN(d−) (1)

where C is the discounted price of the call option, X0 is the initial value of the underlying security, K
is the strike price, t is the expiration date, N is the standard Gaussian CDF, and

d± =
1

σ
log
[
ertX0/K

]
± 1

2
σ.

Example 1. Consider the purchase of a European call option on a stock with a present value of 50
Euros and a strike price of 52 Euros under the following conditions: r = 4%, t = 1 (year), σ = 15%.
To calculate the price of this option we use Equation 1. To that end, we first find d+ and d−.

d+ =
log
[
e0.04(1)50/52

]
0.15

+
1

2
(0.15) = 0.0802 and d− =

log
[
e0.04(1)50/52

]
0.15

− 1

2
(0.15) = −.0698.

We then have

C0 = 50N(0.0802)− 52e−(0.04)(1)N(−0.0698)

= 50(.532)− 52(0.96)(0.472)

= 3.04.

Thus, from Black-Scholes model, the price of this call option would be 3.04 Euros.

Pricing the European Call Option
We can derive the Black-Scholes formula on the premise that our prices follow a log-normal distribu-
tion.
Lemma 1. Assume there are no opportunities for arbitrage and the risk-free interest is r. Given a Eu-
ropean call option with expiration t and strike K, let Xt be the time-t price of the underlying security,
where Xt = X0e

Yt for some Yt ∼ N (µYt, σ
2
Yt

). Then the discounted price of the call option, denoted C,
is given by

C = e−rtEQt
[max(Xt −K, 0)] = X0N(d+)−Ke−rtN(d−)

Proof. The price of a call option should be its discounted expected profit, that is,

C = e−rtEQt
[max(Xt −K, 0)] ;

otherwise, there would be an opportunity for arbitrage, violating our initial assumption. The natural
probability measure to study the price of a security is the time-t cash pricing measure Qt. Expected
profit is thus a straightforward computation:

EQt
[max(Xt −K, 0)] =

∫
Ω

max(Xt −K, 0) dQt

=

∫
{Xt≥K}

Xt −K dQt

=⇒ EQt
[max(Xt −K, 0)] = ertX0N(d+)−KN(d−), (2)

and by discounting this formula, we obtain EQt
[max(Xt −K, 0)] = X0N(d+)−Ke−rtN(d−).

Log-Normality of Prices
We use the Lindeberg-Feller Central Limit Theorem to prove the premise that our prices follow a log-
normal distribution under the following assumptions.
Assumption 1. For each t, the random variable Yt = logXt has mean 0 and finite variance.
Assumption 2. The differences Yt−Ys are independent for disjoint intervals [s, t]; for intervals of equal
length, they are i.i.d.

Assumption 3. For every ε > 0, nE
[(
Yt/n − Y0

)2
;
∣∣∣Yt/n − Y0

∣∣∣ > ε

]
→ 0.

Theorem 2. Under Assumptions 1, 2, and 3, for every t > 0, Yt = logXt is a normal random variable
with variance σ2t.

In addition to the Lindeberg-Feller central limit theorem, the proof of Theorem 2 makes use of the
following lemma.
Lemma 2. Suppose f : [0,∞) → [0,∞) satisfies f (x + y) = f (x) + f (y). There exists a constant C
such that f (x) = Cx for all x ≥ 0.
Proof. (Theorem 2) We first show that

Var [Yt] = σ2t. (3)

by Assumption 2, Var [Yt+s − Y0] = Var [Ys − Y0] + Var [Yt − Y0] . With f (u) = Var [Yu − Y0], since
f is non-negative, by Lemma 2 , f (t) = tf (1), where f (1) = Var [Y1 − Y0] = σ2, thus establishing
Equation 3. Now with Xni = Yti/n − Yt(i−1)/n we obtain, by telescopic cancellation,

Yt − Y0 =

n∑
i=1

Xni, (4)

where the dependence of Xni on t is supressed for notational convenience. Clearly, Xni has mean 0.
By the assumption of stationarity, Xni is distributionally equal to Yt/n−Y0. Consequently, by Equation
3,

E
[
X2
ni

]
= σ2 t

n
, (5)

implying
∑n
i=1 E

[
X2
ni

]
= σ2t.

Finally, by the consequence of the assumption of stationarity noted above,
n∑
i=1

E
[
X2
ni; |Xni| > ε

]
= nE

[(
Yt/n − Y0

)2
;
∣∣∣Yt/n − Y0

∣∣∣ > ε

]
,

whence the Lindeberg condition follows from Assumption 3.

Simulations
The Black-Scholes stochastic differential equation is written dXt = µXtdt + σXtdWt with the unique
solution being a geometric Brownian motion

Xt = X0 exp

((
µ− σ2

2

)
t + σWt

)
(6)

We might expect, then, that the approximate process,

St+1 = S0

t∏
j=0

(1 + µ + σεj) (7)

for an appropriate choice of i.i.d. random variables εt, serves as a discrete simulation of geometric
Brownian motion. By Equation 6, we expect the Gaussian associated to St to have parameters approx-
imately (µ − σ2/2)t and σ2t respectively. We can compute the theoretical mean and variance of the
random variable Yt using discrete intervals.

E[Yt] = logS0 + t(−r + E[log(1 + µ + σεi)]). (8)

Var(Yt) = E[(Yt)
2]− E[Yt]

2 =
(
E[log2(1 + µ + σεi)]−

(
E[log(1 + µ + σεi)]

)2
)
t. (9)

Using parameters obtained from real market values, we compute the following theoretical means and
variances for εi ∼ Rademacher before running the actual market simulations.

εi ∼ Rademacher E[Yt] = 6.8326 Slope = 0.0002580

Var(Yt) = 2.370 Slope = 0.0004329

Our objective is to verify the following: The mean of our log-sample paths at time t approximate to
(µ − σ2/2)t, the variance of our log-sample paths at time t approximate to σ2t and at each time t,
Xt is log-normal. From Figures 1(A) and 1(B), we note that the slopes given by our toy model, both
simulated and theoretical, closely match the drift and volatility of the geometric Brownian motion.

Figure 1: Simulated slopes for εi ∼ Rademacher.

Figure 2 shows the log prices at the end of the 15th year. The data is normally distributed.

Figure 2: Histogram of log prices at Year 15 with εi ∼ Rademacher.


