Approximation of Laplacian Operators

Tonya Patricks, Genevieve Romanelli

University of Connecticut

August 1, 2023

Patricks, Romanelli (UConn)

Approximation of Laplacian Operators

4 ⊕ → 4 ≥ → 4 ≥ →
8/1/23

Outline

1 Definitions and Background

- 2 something new title
- 3 Detour into Measurable Space

→

Consider the probabilistic Laplacian matrix with periodicity. We will primarily look at a function f(x), $x \in [-1, 1]$. Define;

Consider the probabilistic Laplacian matrix with periodicity. We will primarily look at a function f(x), $x \in [-1, 1]$. Define;

 $\boldsymbol{\varepsilon}:$ determines which points on the graph are connected when constructing the Laplacian

Consider the probabilistic Laplacian matrix with periodicity. We will primarily look at a function f(x), $x \in [-1, 1]$. Define;

 $\varepsilon :$ determines which points on the graph are connected when constructing the Laplacian

 $\delta:$ distance between "equally spaced" points

Consider the probabilistic Laplacian matrix with periodicity. We will primarily look at a function f(x), $x \in [-1, 1]$. Define;

 $\varepsilon :$ determines which points on the graph are connected when constructing the Laplacian

 $\delta:$ distance between "equally spaced" points

L: regular Laplace-Beltrami operator

Consider the probabilistic Laplacian matrix with periodicity. We will primarily look at a function f(x), $x \in [-1, 1]$. Define:

 ε : determines which points on the graph are connected when constructing the Laplacian

 δ : distance between "equally spaced" points

L: regular Laplace-Beltrami operator

 $\mathcal{L}_{n,\varepsilon}f(x)$: probabilistic Laplacian of f depending on n and ε

Consider the probabilistic Laplacian matrix with periodicity. We will primarily look at a function f(x), $x \in [-1, 1]$. Define:

 ε : determines which points on the graph are connected when constructing the Laplacian

- δ : distance between "equally spaced" points
- L: regular Laplace-Beltrami operator

 $\mathcal{L}_{n,\varepsilon}f(x)$: probabilistic Laplacian of f depending on n and ε

$$\mathcal{L}_{\varepsilon}f(x) = rac{1}{|\mathcal{B}(x,\varepsilon)|} \int_{\mathcal{B}(x,\varepsilon)} (f(x) - f(y)) dy$$

A 2006 paper of Giné and Koltchinskii explores a compact Riemannian submanifold M of \mathbb{R}^m of dimension d without boundary. Let $X_i, ..., X_n$ be i.i.d. points in M with normal distribution.

A 2006 paper of Giné and Koltchinskii explores a compact Riemannian submanifold M of \mathbb{R}^m of dimension d without boundary. Let $X_i, ..., X_n$ be i.i.d. points in M with normal distribution.

For $f \in C^3$, they approximate the Laplace-Beltrami operator using a weighted averaging operator,

$$\Delta_{h_n,n}f(p) := \frac{1}{nh_n^{d+2}}\sum_{i=1}^n (f(X_i) - f(p)) \cdot K(\frac{p - X_i}{h_n}), p \in M$$

A 2006 paper of Giné and Koltchinskii explores a compact Riemannian submanifold M of \mathbb{R}^m of dimension d without boundary. Let $X_i, ..., X_n$ be i.i.d. points in M with normal distribution.

For $f \in C^3$, they approximate the Laplace-Beltrami operator using a weighted averaging operator,

$$\Delta_{h_n,n}f(p):=\frac{1}{nh_n^{d+2}}\sum_{i=1}^n(f(X_i)-f(p))\cdot K(\frac{p-X_i}{h_n}), p\in M$$

 $K(\frac{p-X_i}{h_n})$ is the Gaussian kernel and $h_n \to 0$ as $n \to \infty$.

 h_n pertains to our usage of ε .

- (個) - (日) - (日) - (日)

Giné and Koltchinskii consider a manifold with no boundary or a boundary that is negligible.

Giné and Koltchinskii consider a manifold with no boundary or a boundary that is negligible.

We will perform a similar analysis but consider the boundary on the closed unit interval [-1, 1].

Giné and Koltchinskii consider a manifold with no boundary or a boundary that is negligible.

We will perform a similar analysis but consider the boundary on the closed unit interval [-1, 1].

$$\mathcal{L}_{arepsilon}f(x)
ightarrow Lf(x) ext{ as } arepsilon
ightarrow 0$$

 $|\mathcal{L}_{arepsilon} - \mathcal{L}_{n,arepsilon}| = |L - rac{1}{arepsilon^2}\mathcal{L}_{arepsilon}| + |rac{1}{arepsilon^2}\mathcal{L}_{arepsilon} - rac{1}{arepsilon^2}\mathcal{L}_{n,arepsilon}|$

A method for approximating Lf(x) is by use of Taylor series expansion.

A method for approximating Lf(x) is by use of Taylor series expansion.

Let X be an arbitrary metric space. There is no guarantee of the existence of $(+, \cdot)$ in X, and thus we cannot form the derivatives necessary for a Taylor series in X.

A method for approximating Lf(x) is by use of Taylor series expansion.

Let X be an arbitrary metric space. There is no guarantee of the existence of $(+, \cdot)$ in X, and thus we cannot form the derivatives necessary for a Taylor series in X.

Instead, let us consider a sufficiently smooth function f on [-1, 1]. Then on the interval $x_m + \varepsilon, x_m - \varepsilon$ we have the Taylor series expansion

$$f(y) = f(x_m) + f'(x_m)(y - x_m) + \frac{f''(x_m)(y - x_m)^2}{2} + \dots$$

Let us now consider a function that has even symmetry outside of [-1, 1].

3

Let us now consider a function that has even symmetry outside of [-1, 1].

Fix $\varepsilon \in (0,1)$. For f on [-1,1], define a function \tilde{f} on $[-1-\varepsilon, 1+\varepsilon]$ by

$$\tilde{f}(x) = \begin{cases} f(x) & x \in [-1, 1] \\ f(2 - x) & x \in (1, 1 + \varepsilon] \\ f(-2 - x) & x \in [-1 - \varepsilon, -1) \end{cases}$$
(2.1)

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

(3) 3

Lemma (1)

If $f \in C^2[-1, 1]$, i.e. if both f' and f'' both exist and are both continuous, and f'(1) = f'(-1) = 0, then $\tilde{f} \in C^2$.

• • = • • = •

Lemma (1)

If $f \in C^2[-1, 1]$, i.e. if both f' and f'' both exist and are both continuous, and f'(1) = f'(-1) = 0, then $\tilde{f} \in C^2$.

Theorem (1) If $f \in C^2[-1, 1]$ then

$$\lim_{\varepsilon\to 0}\frac{1}{\varepsilon^2}\mathcal{L}_{\varepsilon}f(x)=-\frac{f''(x)}{6}.$$

Patricks, Romanelli	(UConn)
---------------------	---------

Proof of Theorem (1)

Recall from Lemma 1 that since f'(1) = f'(-1) = 0, \tilde{f} is sufficiently smooth so that we may look at the Taylor series. If $x \in [-1, 1]$ then take x < min(|x - 1|, |x + 1|). Consider the Taylor expansion of \tilde{f} ,

$$\tilde{f}(y) = \tilde{f}(x) + \tilde{f}'(x)(y-x) + \frac{\tilde{f}''(x)}{2}(y-x)^2 + o(|y-x|^2)$$

Recall from Lemma 1 that since f'(1) = f'(-1) = 0, \tilde{f} is sufficiently smooth so that we may look at the Taylor series. If $x \in [-1, 1]$ then take x < min(|x - 1|, |x + 1|). Consider the Taylor expansion of \tilde{f} ,

$$\tilde{f}(y) = \tilde{f}(x) + \tilde{f}'(x)(y-x) + \frac{\tilde{f}''(x)}{2}(y-x)^2 + o(|y-x|^2)$$

Using some algebra and basic integration, we have

$$\int_{x-\varepsilon}^{x+\varepsilon} \tilde{f}(x) - \tilde{f}(y) dy = -\tilde{f}'(x) \int_{x-\varepsilon}^{x+\varepsilon} (y-x) dy - \frac{f^{7\prime}(x)}{2} \int_{x-\varepsilon}^{x+\varepsilon} (y-x)^2 dy + \int_{x-\varepsilon}^{x+\varepsilon} o(|y-x|^2) dy$$

Proof of Theorem (1) cont'd.

We will use a substition t = y - x and algebraic manipulation to obtain

$$\frac{1}{2\varepsilon}\int_{x-\varepsilon}^{x+\varepsilon}\tilde{f}(x)-\tilde{f}(y)dy=-\frac{\tilde{f}''(x)\varepsilon^2}{6}+\frac{1}{2\varepsilon}\int_{-\varepsilon}^{\varepsilon}t^2dt\cdot o(\varepsilon^2)$$

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ <

3

Proof of Theorem (1) cont'd.

We will use a substition t = y - x and algebraic manipulation to obtain

$$\frac{1}{2\varepsilon}\int_{x-\varepsilon}^{x+\varepsilon}\tilde{f}(x)-\tilde{f}(y)dy=-\frac{\tilde{f}''(x)\varepsilon^2}{6}+\frac{1}{2\varepsilon}\int_{-\varepsilon}^{\varepsilon}t^2dt\cdot o(\varepsilon^2)$$

Observe that the following inequality holds;

$$egin{aligned} |\mathcal{L}_arepsilon f(x)+rac{ ilde{f}''(x)e^2}{6}|&\leq rac{1}{2arepsilon}\int_{-arepsilon}^arepsilon t^2dt\cdot o(arepsilon^2)&=rac{arepsilon^2}{3}\cdot o(arepsilon^2)\ &|rac{1}{arepsilon^2}\mathcal{L}_arepsilon f(x)+rac{ ilde{f}''(x)}{6}|&\leq rac{arepsilon^2}{3}\cdot o(1)=0 ext{ as }arepsilon o 0\ &\therefore \lim_{arepsilon o 0}rac{1}{arepsilon^2}\mathcal{L}_arepsilon f(x)&=-rac{f''(x)}{6}. \end{aligned}$$

Patricks, Romanelli (UConn)

So.

8/1/23

10/18

Functions in C^3 and C^4

Corollary (1) If $f \in C^3[-1, 1]$ then

$$\lim_{\varepsilon\to 0}\frac{1}{\varepsilon^2}\mathcal{L}_{\varepsilon}f(x)=-\frac{f''(x)}{6}.$$

Patricks, Romanelli (UConn)

Approximation of Laplacian Operators

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ □ `

11/18

э

Functions in C^3 and C^4

Proof.

Refer to our previous proof of Theorem (1). Expand the Taylor series of \tilde{f} to its third derivative term, i.e.

$$\tilde{f}(y) = \tilde{f}(x) + \tilde{f}'(x)(y-x) + \frac{\tilde{f}''(x)}{2}(y-x)^2 + \frac{\tilde{f}'''(x)}{6}(y-x)^3 + o(\varepsilon^3)$$

Performing the same integration as before, we obtain

$$|rac{1}{arepsilon^2}\mathcal{L}_arepsilon f(x)+rac{ ilde{f''}(x)}{6}|\leq 0 ext{ as }arepsilon
ightarrow 0$$

Due to the symmetry of \tilde{f} , our odd degree terms will cancel as desired.

伺 ト イ ヨ ト イ ヨ ト

12 / 18

Functions in C^3 and C^4

Corollary (2) If $f \in C^4[-1, 1]$ then

$$\lim_{\varepsilon\to 0}\frac{1}{\varepsilon^2}\mathcal{L}_{\varepsilon}f(x)=-\frac{f''(x)}{6}.$$

Patricks, Romanelli (UConn)

Approximation of Laplacian Operators

13/18

э

To follow the results of Giné and Koltchinskii, we want to prove that $\mathcal{L}_{n,\varepsilon}f(x)$ and $\mathcal{L}_{\varepsilon}f(x)$ converge as the number of points *n* goes to infinity.

To follow the results of Giné and Koltchinskii, we want to prove that $\mathcal{L}_{n,\varepsilon}f(x)$ and $\mathcal{L}_{\varepsilon}f(x)$ converge as the number of points *n* goes to infinity.

It seems like on the interval with evenly spaced points, $|\mathcal{L}_{n,\varepsilon}f(x) - \mathcal{L}_{\varepsilon}f(x)| \to 0$ as $n \to \infty$. What does this convergence depend on? Placement of points, definition of f, something else? To follow the results of Giné and Koltchinskii, we want to prove that $\mathcal{L}_{n,\varepsilon}f(x)$ and $\mathcal{L}_{\varepsilon}f(x)$ converge as the number of points *n* goes to infinity.

It seems like on the interval with evenly spaced points, $|\mathcal{L}_{n,\varepsilon}f(x) - \mathcal{L}_{\varepsilon}f(x)| \to 0$ as $n \to \infty$. What does this convergence depend on? Placement of points, definition of f, something else?

Convergence depends on how well points approximate the space and the relationship between metric and measure.

Measure-Theoretic Proof Sketch

Let (X, μ) be a measurable space such that for any natural number n, there exists a partition \mathcal{A}_n of X into measurable cells $A_{n,i}$, with $\mu(A_{n,i}) = \sigma_n$ for some σ_n independent of i.

Let (X, μ) be a measurable space such that for any natural number n, there exists a partition \mathcal{A}_n of X into measurable cells $A_{n,i}$, with $\mu(A_{n,i}) = \sigma_n$ for some σ_n independent of i. Suppose further that for all m < n, for all i, we can find a collection of $A_{n,i}$ such that $A_{m,i} = \bigcup A_{n,i}$. Let (X, μ) be a measurable space such that for any natural number n, there exists a partition \mathcal{A}_n of X into measurable cells $A_{n,i}$, with $\mu(A_{n,i}) = \sigma_n$ for some σ_n independent of i. Suppose further that for all m < n, for all i, we can find a collection of $A_{n,j}$ such that $A_{m,i} = \bigcup A_{n,j}$. Define the averaging operator

$$\mathcal{T}_m f(x) = \frac{1}{\sigma_m} \int_{A_{m(x)}} (f(x) - f(y)) d\mu(y)$$

Let (X, μ) be a measurable space such that for any natural number n, there exists a partition \mathcal{A}_n of X into measurable cells $A_{n,i}$, with $\mu(A_{n,i}) = \sigma_n$ for some σ_n independent of i. Suppose further that for all m < n, for all i, we can find a collection of $A_{n,j}$ such that $A_{m,i} = \bigcup A_{n,j}$. Define the averaging operator

$$\mathcal{T}_m f(x) = \frac{1}{\sigma_m} \int_{\mathcal{A}_{m(x)}} (f(x) - f(y)) d\mu(y)$$

Fix some n, m with n > m. Choose points $x_{n,j}$ in X such that each $A_{n,j}$ contains exactly one $x_{n,j}$, and $x_{n,j} \in A_{n,j}$.

(人間) トイヨト イヨト ニヨ

Let (X, μ) be a measurable space such that for any natural number n, there exists a partition \mathcal{A}_n of X into measurable cells $A_{n,i}$, with $\mu(A_{n,i}) = \sigma_n$ for some σ_n independent of i. Suppose further that for all m < n, for all i, we can find a collection of $A_{n,j}$ such that $A_{m,i} = \bigcup A_{n,j}$. Define the averaging operator

$$\mathcal{T}_m f(x) = \frac{1}{\sigma_m} \int_{\mathcal{A}_{m(x)}} (f(x) - f(y)) d\mu(y)$$

Fix some n, m with n > m. Choose points $x_{n,j}$ in X such that each $A_{n,j}$ contains exactly one $x_{n,j}$, and $x_{n,j} \in A_{n,j}$. Define

$$\mathcal{L}_{n,m}f(x) = \frac{\sigma_n}{\sigma_m} \sum_{x_{n,j} \in A_m(x)} f(x) - f(x_{n,j})$$

Patricks, Romanelli (UConn)

15 / 18

Measure-Theoretic Proof Sketch

ī.

$$\begin{aligned} |\mathcal{L}_{n,m}f(x) - \mathcal{T}_mf(x)| &= \left| \frac{1}{\sigma_m} \int_{A_{m(x)}} f(y) d\mu(y) - \frac{\sigma_n}{\sigma_m} \sum_{x_{n,j} \in A_m(x)} f(x_{n,j}) \right| \\ &= \frac{\sigma_n}{\sigma_m} \left| \sum_{A_{n,j} \subset A_{m(x)}} \frac{1}{\sigma_n} \int_{A_{n,j}} f(x_{n,j}) - f(y) d\mu(y) \right| \\ &\leq \frac{\sigma_n}{\sigma_m} \sum_{A_{n,j} \subset A_{m(x)}} \frac{1}{\sigma_n} \left| \int_{A_{n,j}} f(x_{n,j}) - f(y) d\mu(y) \right| \\ &\leq \sup_{A_{n,j} \subset A_{m(x)}} \sup_{z \in A_{n,j}} |f(x_{n,j}) - f(z)| \leq \omega_f(A_n) \end{aligned}$$

Patricks, Romanelli (UConn)

Approximation of Laplacian Operators

8/1/23

∃ ⇒

16/18

э

Measure-Theoretic Proof Sketch

÷

$$\begin{aligned} |\mathcal{L}_{n,m}f(x) - \mathcal{T}_mf(x)| &= \left| \frac{1}{\sigma_m} \int_{A_{m(x)}} f(y) d\mu(y) - \frac{\sigma_n}{\sigma_m} \sum_{x_{n,j} \in A_m(x)} f(x_{n,j}) \right| \\ &= \frac{\sigma_n}{\sigma_m} \left| \sum_{A_{n,j} \subset A_{m(x)}} \frac{1}{\sigma_n} \int_{A_{n,j}} f(x_{n,j}) - f(y) d\mu(y) \right| \\ &\leq \frac{\sigma_n}{\sigma_m} \sum_{A_{n,j} \subset A_{m(x)}} \frac{1}{\sigma_n} \left| \int_{A_{n,j}} f(x_{n,j}) - f(y) d\mu(y) \right| \\ &\leq \sup_{A_{n,j} \subset A_{m(x)}} \sup_{z \in A_{n,j}} |f(x_{n,j}) - f(z)| \leq \omega_f(A_n) \end{aligned}$$

So the difference between $\mathcal{L}_{n,m}f(x)$ and $\mathcal{T}_mf(x)$ at a given minimum level *n* is bounded by the worst oscillation over a single level-*n* cell.

.

Now, suppose (X, μ) is equipped with a metric such that diam $(A_n) \to 0$ as $n \to \infty$, and that f is uniformly continuous.

Now, suppose (X, μ) is equipped with a metric such that diam $(A_n) \to 0$ as $n \to \infty$, and that f is uniformly continuous.

Since the difference between $\mathcal{L}_{n,m}f(x)$ and $\mathcal{T}_mf(x)$ is bounded by $\omega_f(A_n)$, as the diameter of A_n goes to 0, $|\mathcal{L}_{n,m}f(x) - \mathcal{T}_mf(x)| \to 0$.

Consider a level-*n* approximation of the SG embedded in \mathbb{R}^2 with a measure that assigns cells of equal level the same volume.

Consider a level-*n* approximation of the SG embedded in \mathbb{R}^2 with a measure that assigns cells of equal level the same volume.

So any neighborhood can be partitioned into level-n cells. Applying the first result,

$$|\mathcal{L}_{n,m}f(x)-\mathcal{T}_mf(x)|\leq \omega_f(A_n)$$

Consider a level-*n* approximation of the SG embedded in \mathbb{R}^2 with a measure that assigns cells of equal level the same volume.

So any neighborhood can be partitioned into level-n cells. Applying the first result,

$$|\mathcal{L}_{n,m}f(x)-\mathcal{T}_mf(x)|\leq \omega_f(A_n)$$

Since diam $(A_n) \to 0$ as $n \to \infty$, for f uniformly continuous, we can conclude $|\mathcal{L}_{n,m}f(x) - \mathcal{T}_mf(x)| \to 0$.

- (日本) - (1) -