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Approximation of the Laplacian

Consider the probabilistic Laplacian matrix with periodicity. We will
primarily look at a function f(x), x € [-1,1].
Define;
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€: determines which points on the graph are connected when constructing
the Laplacian
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Consider the probabilistic Laplacian matrix with periodicity. We will
primarily look at a function f(x), x € [-1,1].
Define;

€: determines which points on the graph are connected when constructing
the Laplacian

§: distance between "equally spaced” points
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Approximation of the Laplacian

Consider the probabilistic Laplacian matrix with periodicity. We will
primarily look at a function f(x), x € [-1,1].
Define;

€: determines which points on the graph are connected when constructing
the Laplacian

§: distance between "equally spaced” points

L: regular Laplace-Beltrami operator
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Approximation of the Laplacian

Consider the probabilistic Laplacian matrix with periodicity. We will
primarily look at a function f(x), x € [-1,1].
Define;

€: determines which points on the graph are connected when constructing
the Laplacian

§: distance between "equally spaced” points
L: regular Laplace-Beltrami operator

Lnf(x): probabilistic Laplacian of f depending on n and ¢
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Approximation of the Laplacian

Consider the probabilistic Laplacian matrix with periodicity. We will
primarily look at a function f(x), x € [-1,1].
Define;

€: determines which points on the graph are connected when constructing
the Laplacian

§: distance between "equally spaced” points
L: regular Laplace-Beltrami operator

Lnf(x): probabilistic Laplacian of f depending on n and ¢

Lf(x) = Wlﬁ)\ fB(X,E)(f(X) —f(y))dy
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Giné and Koltchinskii (2006)

A 2006 paper of Giné and Koltchinskii explores a compact Riemannian

submanifold M of R™ of dimension d without boundary. Let X;, ..., X, be
i.i.d. points in M with normal distribution.
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Giné and Koltchinskii (2006)

A 2006 paper of Giné and Koltchinskii explores a compact Riemannian
submanifold M of R™ of dimension d without boundary. Let X;, ..., X, be
i.i.d. points in M with normal distribution.

For f € C3, they approximate the Laplace-Beltrami operator using a
weighted averaging operator,

i p— X
A, nf(p) = hd+2z ) K( hn JpeM
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Giné and Koltchinskii (2006)

A 2006 paper of Giné and Koltchinskii explores a compact Riemannian
submanifold M of R™ of dimension d without boundary. Let X;, ..., X, be
i.i.d. points in M with normal distribution.

For f € C3, they approximate the Laplace-Beltrami operator using a
weighted averaging operator,

._ p— X
Ap, of(p '_nhd+2z p)) - K( " ), pEM

K(p;nx") is the Gaussian kernel and h, — 0 as n — oo.

h, pertains to our usage of ¢.
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Boundary on [-1,1]

Giné and Koltchinskii consider a manifold with no boundary or a boundary
that is negligible.
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Boundary on [-1,1]

Giné and Koltchinskii consider a manifold with no boundary or a boundary
that is negligible.

We will perform a similar analysis but consider the boundary on the closed
unit interval [—1,1].
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Boundary on [-1,1]

Giné and Koltchinskii consider a manifold with no boundary or a boundary
that is negligible.

We will perform a similar analysis but consider the boundary on the closed
unit interval [—1,1].

L.f(x)— Lf(x)ase—0

1 1 1
[£e = Lnel = 1L = Lel +155L0 = ZLne
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Conditions for Taylor Series

A method for approximating Lf(x) is by use of Taylor series expansion.
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Conditions for Taylor Series

A method for approximating Lf(x) is by use of Taylor series expansion.
Let X be an arbitrary metric space. There is no guarantee of the existence

of (+,-) in X, and thus we cannot form the derivatives necessary for a
Taylor series in X.
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Conditions for Taylor Series

A method for approximating Lf(x) is by use of Taylor series expansion.

Let X be an arbitrary metric space. There is no guarantee of the existence

of (+,-) in X, and thus we cannot form the derivatives necessary for a
Taylor series in X.

Instead, let us consider a sufficiently smooth function f on [—1,1]. Then
on the interval x,, + €, X, — € we have the Taylor series expansion

) = Fxm) + Fm)ly — )+ om0l
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Utilizing Symmetry

Let us now consider a function that has even symmetry outside of [—1,1].
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Utilizing Symmetry

Let us now consider a function that has even symmetry outside of [—1,1].
Fix € € (0,1). For f on [—1,1], define a function f on [-1 —&,1 + ¢] by

f(x) x €[-1,1]
fFx)=f2—x) xe(1,1+¢] (2.1)
f(—2—x) xe[-1—-¢,-1)
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Utilizing Symmetry

Lemma (1)

If f € C?[-1,1], i.e. if both f' and f" both exist and are both continuous,
and f'(1) = f'(=1) = 0, then f € C2.
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Utilizing Symmetry

Lemma (1)

If f € C?[-1,1], i.e. if both f' and f" both exist and are both continuous,
and f'(1) = f'(~1) = 0, then f € C2.

Theorem (1)
If f € C?[-1,1] then

_f”(x)‘

1
lim S L.f(x) = 3

e—0 g2
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Proof of Theorem (1)

Recall from Lemma 1 that since f/(1) = f/(—1) = 0, f is sufficiently
smooth so that we may look at the Taylor series. If x € [—1,1] then take
x < min(|x — 1|, |x + 1]). Consider the Taylor expansion of f,

) = 700 + 700 =)+ =2 =7+ ofly = o)
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Proof of Theorem (1)

Recall from Lemma 1 that since f/(1) = f/(—1) = 0, f is sufficiently
smooth so that we may look at the Taylor series. If x € [—1,1] then take
x < min(|x — 1|, |x + 1]). Consider the Taylor expansion of f,

) = 7+ FOe)(y — ) + 0

(v = x)* + o(ly — x[?)

Using some algebra and basic integration, we have

x—g x— 2

J R R Y e R M I e
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Proof of Theorem (1) cont'd.

We will use a substition t = y — x and algebraic manipulation to obtain

1 [xte . ~ f'(x)e2 1 [, 5
— f(x)—f =" 4 — :
2 /.. (x) = f(y)dy 6 + e /_gt dt - o(e?)
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Proof of Theorem (1) cont'd.

We will use a substition t = y — x and algebraic manipulation to obtain

1 [xte . ~ f'(x)e2 1 [, 5
il F(x) - f S =l :
2% /.. (x) = f(y)dy et /_et dt - o(e?)

Observe that the following inequality holds;

" 2
L)+ () |_21/ Pat-o() = 5 o)

So,
Clr 2
6 3

1
|8—2£5f(x)+ -0(l)=0ase—0

(%)
slm) 52£ Fx) = 6
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Functions in C3 and C*

Corollary (1)
If f € C3[-1,1] then

_f”(x)‘
6

1
lim 2 Lefx) =

Patricks, Romanelli (UConn) Approximation of Laplacian Operators 8/1/23 11/18



Functions in C3 and C*

Proof.

Refer to our previous proof of Theorem (1). Expand the Taylor series of f
to its third derivative term, i.e.

(v P+ T8y 2 4 ofe)

Fly) = F() + F0)(y —x) +

Performing the same integration as before, we obtain

f//
|2Ef() é)\<0355—>0

Due to the symmetry of #, our odd degree terms will cancel as desired.
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Functions in C3 and C*

Corollary (2)
If f € C*[—1,1] then

_f”(x)‘
6

1
lim 2 Lefx) =
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Convergence of Discrete Operator

To follow the results of Giné and Koltchinskii, we want to prove that
Ln:f(x) and L.f(x) converge as the number of points n goes to infinity.
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Convergence of Discrete Operator

To follow the results of Giné and Koltchinskii, we want to prove that
Ln:f(x) and L.f(x) converge as the number of points n goes to infinity.

It seems like on the interval with evenly spaced points,

|Lnef(x) — LoF(x)] = 0 as n — oo. What does this convergence depend
on? Placement of points, definition of f, something else?
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Convergence of Discrete Operator

To follow the results of Giné and Koltchinskii, we want to prove that
Ln:f(x) and L.f(x) converge as the number of points n goes to infinity.

It seems like on the interval with evenly spaced points,
|Lnef(x) — LoF(x)] = 0 as n — oo. What does this convergence depend
on? Placement of points, definition of f, something else?

Convergence depends on how well points approximate the space and the
relationship between metric and measure.
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Measure-Theoretic Proof Sketch

Let (X, ) be a measurable space such that for any natural number n,
there exists a partition A, of X into measurable cells A, ;, with
1(An,i) = op for some o, independent of i.
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Measure-Theoretic Proof Sketch

Let (X, ) be a measurable space such that for any natural number n,
there exists a partition A, of X into measurable cells A, ;, with

((An,i) = op for some o, independent of i. Suppose further that for all
m < n, for all i, we can find a collection of A, such that Ap,; = JAn,.
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Measure-Theoretic Proof Sketch

Let (X, ) be a measurable space such that for any natural number n,
there exists a partition A, of X into measurable cells A, ;, with

((An,i) = op for some o, independent of i. Suppose further that for all
m < n, for all i, we can find a collection of A, such that Ap,; = JAn,.
Define the averaging operator

Tf(x) = - /A (F(x) — F(¥))du(y)

Tm J A
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Measure-Theoretic Proof Sketch

Let (X, ) be a measurable space such that for any natural number n,
there exists a partition A, of X into measurable cells A, ;, with

((An,i) = op for some o, independent of i. Suppose further that for all
m < n, for all i, we can find a collection of A, such that Ap,; = JAn,.
Define the averaging operator

1

Tof() = = [ (£ = F)dly)

m(x)

Fix some n, m with n > m. Choose points x,; in X such that each A, ;
contains exactly one x,j, and x,; € Ap ;.
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Measure-Theoretic Proof Sketch

Let (X, ) be a measurable space such that for any natural number n,
there exists a partition A, of X into measurable cells A, ;, with
((An,i) = op for some o, independent of i. Suppose further that for all
m < n, for all i, we can find a collection of A, such that Ap,; = JAn,.
Define the averaging operator

1

Tof() = = [ (£ = F)dly)

m(x)

Fix some n, m with n > m. Choose points x,; in X such that each A, ;
contains exactly one x,j, and x,,;j € A, ;. Define

Lomf(x) =2 Z f(x) = f(xny)

XnjEAmM(X)

Patricks, Romanelli (UConn) Approximation of Laplacian Operators 8/1/23 15/18



Measure-Theoretic Proof Sketch

1/A F)duly) = 2% 3" Fxy)

|Ln,mf(x) = Tmf (X)| = | —

Om m(x) Im Xn,jEAmM(X)
On

= P Z / XnJ (y)du(y)

m An i CAm(x

On 1

< 1 s = F)dutn)

T AniCAmpy " 17 A

< supsup [f(xag) = F(2)] < wr(An)

A,,,J'CAm(X) ZEA,,’J'
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Measure-Theoretic Proof Sketch

1
Lnmf () — Tuf (x)] = | / F(y)duly)
Tm J A
_ On 3 /
Om A A
< on L /
Om AnjCAm(x) n Anj
< sup  sup |F(xng) —

A,,,J'CAm(X) ZEA,,J

So the difference between L, f(x) and T,f(x)

o
- Ui Z f(xny)

mx,,,jEAm(x)

XnJ (v)du(y)

f(xnj) — F(y)du(y)

f(2)] < wr(An)

at a given minimum

level n is bounded by the worst oscillation over a single level-n cell.
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Connecting to a Metric

Now, suppose (X, i) is equipped with a metric such that diam(A,) — 0 as
n — oo, and that f is uniformly continuous.
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Connecting to a Metric

Now, suppose (X, i) is equipped with a metric such that diam(A,) — 0 as
n — oo, and that f is uniformly continuous.

Since the difference between L, ,,f(x) and Tn,f(x) is bounded by w¢(Ap),
as the diameter of A, goes to 0, |Lp mf(x) — Tmf(x)| — O.
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Example: Convergence on Sierpinski Gasket

Consider a level-n approximation of the SG embedded in R? with a
measure that assigns cells of equal level the same volume.
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Example: Convergence on Sierpinski Gasket

Consider a level-n approximation of the SG embedded in R? with a
measure that assigns cells of equal level the same volume.

So any neighborhood can be partitioned into level-n cells. Applying the
first result,

|Ln.mf(x) — Tmf (x)] < wr(Ap)
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Example: Convergence on Sierpinski Gasket

Consider a level-n approximation of the SG embedded in R? with a
measure that assigns cells of equal level the same volume.

So any neighborhood can be partitioned into level-n cells. Applying the
first result,

|Ln.mf(x) — Tmf (x)] < wr(Ap)

Since diam(A,) — 0 as n — oo, for f uniformly continuous, we can
conclude L, mf(x) — Tmf(x)| — 0.
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