
Approximation of Laplacian Operators

Tonya Patricks, Genevieve Romanelli

University of Connecticut

August 1, 2023

Patricks, Romanelli (UConn) Approximation of Laplacian Operators 8/1/23 1 / 18



Outline

1 Definitions and Background

2 something new title

3 Detour into Measurable Space

4 Example

Patricks, Romanelli (UConn) Approximation of Laplacian Operators 8/1/23 2 / 18



Approximation of the Laplacian

Consider the probabilistic Laplacian matrix with periodicity. We will
primarily look at a function f (x), x ∈ [−1, 1].
Define;

ε: determines which points on the graph are connected when constructing
the Laplacian

δ: distance between ”equally spaced” points

L: regular Laplace-Beltrami operator

Ln,εf (x): probabilistic Laplacian of f depending on n and ε

Lεf (x) =
1

|B(x ,ε)|
∫
B(x ,ε)(f (x)− f (y))dy
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Giné and Koltchinskii (2006)

A 2006 paper of Giné and Koltchinskii explores a compact Riemannian
submanifold M of Rm of dimension d without boundary. Let Xi , ...,Xn be
i.i.d. points in M with normal distribution.

For f ∈ C 3, they approximate the Laplace-Beltrami operator using a
weighted averaging operator,

∆hn,nf (p) :=
1

nhd+2
n

n∑
i=1

(f (Xi )− f (p)) · K (
p − Xi

hn
), p ∈ M

K (p−Xi
hn

) is the Gaussian kernel and hn → 0 as n → ∞.

hn pertains to our usage of ε.
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Boundary on [-1,1]

Giné and Koltchinskii consider a manifold with no boundary or a boundary
that is negligible.

We will perform a similar analysis but consider the boundary on the closed
unit interval [−1, 1].

Lεf (x) → Lf (x) as ε → 0

|Lε − Ln,ε| = |L− 1

ε2
Lε|+ | 1

ε2
Lε −

1

ε2
Ln,ε|
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Conditions for Taylor Series

A method for approximating Lf (x) is by use of Taylor series expansion.

Let X be an arbitrary metric space. There is no guarantee of the existence
of (+, ·) in X, and thus we cannot form the derivatives necessary for a
Taylor series in X.

Instead, let us consider a sufficiently smooth function f on [−1, 1]. Then
on the interval xm + ε, xm − ε we have the Taylor series expansion

f (y) = f (xm) + f ′(xm)(y − xm) +
f ′′(xm)(y − xm)

2

2
+ ...
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Utilizing Symmetry

Let us now consider a function that has even symmetry outside of [−1, 1].

Fix ε ∈ (0, 1). For f on [−1, 1], define a function f̃ on [−1− ε, 1 + ε] by

f̃ (x) =


f (x) x ∈ [−1, 1]

f (2− x) x ∈ (1, 1 + ε]

f (−2− x) x ∈ [−1− ε,−1)

(2.1)
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Utilizing Symmetry

Lemma (1)

If f ∈ C 2[−1, 1], i.e. if both f ′ and f ′′ both exist and are both continuous,
and f ′(1) = f ′(−1) = 0, then f̃ ∈ C 2.

Theorem (1)

If f ∈ C 2[−1, 1] then

lim
ε→0

1

ε2
Lεf (x) = − f ′′(x)

6
.
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Proof of Theorem (1)

Recall from Lemma 1 that since f ′(1) = f ′(−1) = 0, f̃ is sufficiently
smooth so that we may look at the Taylor series. If x ∈ [−1, 1] then take
x < min(|x − 1|, |x + 1|). Consider the Taylor expansion of f̃ ,

f̃ (y) = f̃ (x) + f̃ ′(x)(y − x) +
f̃ ′′(x)

2
(y − x)2 + o(|y − x |2)

Using some algebra and basic integration, we have

∫ x+ε

x−ε
f̃ (x) − f̃ (y)dy = −f̃ ′(x)

∫ x+ε

x−ε
(y − x)dy −

˜f ′′(x)

2

∫ x+ε

x−ε
(y − x)2dy +

∫ x+ε

x−ε
o(|y − x|2)dy
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Proof of Theorem (1) cont’d.

We will use a substition t = y − x and algebraic manipulation to obtain

1

2ε

∫ x+ε

x−ε
f̃ (x)− f̃ (y)dy = − f̃ ′′(x)ε2

6
+

1

2ε

∫ ε

−ε
t2dt · o(ε2)

Observe that the following inequality holds;

|Lεf (x) +
f̃ ′′(x)e2

6
| ≤ 1

2ε

∫ ε

−ε
t2dt · o(ε2) = ε2

3
· o(ε2)

So,

| 1
ε2

Lεf (x) +
f̃ ′′(x)

6
| ≤ ε2

3
· o(1) = 0 as ε → 0

∴ lim
ε→0

1

ε2
Lεf (x) = − f ′′(x)

6
.
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Functions in C 3 and C 4

Corollary (1)

If f ∈ C 3[−1, 1] then

lim
ε→0

1

ε2
Lεf (x) = − f ′′(x)

6
.
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Functions in C 3 and C 4

Proof.

Refer to our previous proof of Theorem (1). Expand the Taylor series of f̃
to its third derivative term, i.e.

f̃ (y) = f̃ (x) + f̃ ′(x)(y − x) +
f̃ ′′(x)

2
(y − x)2 +

˜f ′′′(x)

6
(y − x)3 + o(ε3)

Performing the same integration as before, we obtain

| 1
ε2

Lεf (x) +
f̃ ′′(x)

6
| ≤ 0 as ε → 0

Due to the symmetry of f̃ , our odd degree terms will cancel as desired.
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Functions in C 3 and C 4

Corollary (2)

If f ∈ C 4[−1, 1] then

lim
ε→0

1

ε2
Lεf (x) = − f ′′(x)

6
.
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Convergence of Discrete Operator

To follow the results of Giné and Koltchinskii, we want to prove that
Ln,εf (x) and Lεf (x) converge as the number of points n goes to infinity.

It seems like on the interval with evenly spaced points,
|Ln,εf (x)− Lεf (x)| → 0 as n → ∞. What does this convergence depend
on? Placement of points, definition of f , something else?

Convergence depends on how well points approximate the space and the
relationship between metric and measure.
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Measure-Theoretic Proof Sketch

Let (X , µ) be a measurable space such that for any natural number n,
there exists a partition An of X into measurable cells An,i , with
µ(An,i ) = σn for some σn independent of i .

Suppose further that for all
m < n, for all i , we can find a collection of An,j such that Am,i =

⋃
An,j .

Define the averaging operator

Tmf (x) =
1

σm

∫
Am(x)

(f (x)− f (y))dµ(y)

Fix some n,m with n > m. Choose points xn,j in X such that each An,j

contains exactly one xn,j , and xn,j ∈ An,j . Define

Ln,mf (x) =
σn
σm

∑
xn,j∈Am(x)

f (x)− f (xn,j)
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Measure-Theoretic Proof Sketch

|Ln,mf (x)− Tmf (x)| =

∣∣∣∣∣∣ 1

σm

∫
Am(x)

f (y)dµ(y)− σn
σm

∑
xn,j∈Am(x)

f (xn,j)

∣∣∣∣∣∣
=

σn
σm

∣∣∣∣∣∣
∑

An,j⊂Am(x)

1

σn

∫
An,j

f (xn,j)− f (y)dµ(y)

∣∣∣∣∣∣
≤ σn

σm

∑
An,j⊂Am(x)

1

σn

∣∣∣∣∣
∫
An,j

f (xn,j)− f (y)dµ(y)

∣∣∣∣∣
≤ sup

An,j⊂Am(x)

sup
z∈An,j

|f (xn,j)− f (z)| ≤ ωf (An)

So the difference between Ln,mf (x) and Tmf (x) at a given minimum
level n is bounded by the worst oscillation over a single level-n cell.
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Connecting to a Metric

Now, suppose (X , µ) is equipped with a metric such that diam(An) → 0 as
n → ∞, and that f is uniformly continuous.

Since the difference between Ln,mf (x) and Tmf (x) is bounded by ωf (An),
as the diameter of An goes to 0, |Ln,mf (x)− Tmf (x)| → 0.
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Example: Convergence on Sierpinski Gasket

Consider a level-n approximation of the SG embedded in R2 with a
measure that assigns cells of equal level the same volume.

So any neighborhood can be partitioned into level-n cells. Applying the
first result,

|Ln,mf (x)− Tmf (x)| ≤ ωf (An)

Since diam(An) → 0 as n → ∞, for f uniformly continuous, we can
conclude |Ln,mf (x)− Tmf (x)| → 0.
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