Web cookies (also called HTTP cookies, browser cookies, or simply cookies) are small pieces of data that websites store on your device (computer, phone, etc.) through your web browser. They are used to remember information about you and your interactions with the site.
Purpose of Cookies:
Session Management:
Keeping you logged in
Remembering items in a shopping cart
Saving language or theme preferences
Personalization:
Tailoring content or ads based on your previous activity
Tracking & Analytics:
Monitoring browsing behavior for analytics or marketing purposes
Types of Cookies:
Session Cookies:
Temporary; deleted when you close your browser
Used for things like keeping you logged in during a single session
Persistent Cookies:
Stored on your device until they expire or are manually deleted
Used for remembering login credentials, settings, etc.
First-Party Cookies:
Set by the website you're visiting directly
Third-Party Cookies:
Set by other domains (usually advertisers) embedded in the website
Commonly used for tracking across multiple sites
Authentication cookies are a special type of web cookie used to identify and verify a user after they log in to a website or web application.
What They Do:
Once you log in to a site, the server creates an authentication cookie and sends it to your browser. This cookie:
Proves to the website that you're logged in
Prevents you from having to log in again on every page you visit
Can persist across sessions if you select "Remember me"
What's Inside an Authentication Cookie?
Typically, it contains:
A unique session ID (not your actual password)
Optional metadata (e.g., expiration time, security flags)
Analytics cookies are cookies used to collect data about how visitors interact with a website. Their primary purpose is to help website owners understand and improve user experience by analyzing things like:
How users navigate the site
Which pages are most/least visited
How long users stay on each page
What device, browser, or location the user is from
What They Track:
Some examples of data analytics cookies may collect:
Page views and time spent on pages
Click paths (how users move from page to page)
Bounce rate (users who leave without interacting)
User demographics (location, language, device)
Referring websites (how users arrived at the site)
Here’s how you can disable cookies in common browsers:
1. Google Chrome
Open Chrome and click the three vertical dots in the top-right corner.
Go to Settings > Privacy and security > Cookies and other site data.
Choose your preferred option:
Block all cookies (not recommended, can break most websites).
Block third-party cookies (can block ads and tracking cookies).
2. Mozilla Firefox
Open Firefox and click the three horizontal lines in the top-right corner.
Go to Settings > Privacy & Security.
Under the Enhanced Tracking Protection section, choose Strict to block most cookies or Custom to manually choose which cookies to block.
3. Safari
Open Safari and click Safari in the top-left corner of the screen.
Go to Preferences > Privacy.
Check Block all cookies to stop all cookies, or select options to block third-party cookies.
4. Microsoft Edge
Open Edge and click the three horizontal dots in the top-right corner.
Go to Settings > Privacy, search, and services > Cookies and site permissions.
Select your cookie settings from there, including blocking all cookies or blocking third-party cookies.
5. On Mobile (iOS/Android)
For Safari on iOS: Go to Settings > Safari > Privacy & Security > Block All Cookies.
For Chrome on Android: Open the app, tap the three dots, go to Settings > Privacy and security > Cookies.
Be Aware:
Disabling cookies can make your online experience more difficult. Some websites may not load properly, or you may be logged out frequently. Also, certain features may not work as expected.
Topics: Laplacian Eigenmaps, Orthogonal Polynomials, Quantum Information
Participants: Farabie Akanda; Haverford College
Elijah Anderson; Wesleyan University
Elizabeth Athaide; Massachusetts Institute of Technology
Faye Castro; Texas State University
Sara Costa; University of Hartford
Leia Donaway; Swarthmore College
Hank Ewing; Appalachian State University
Caleb Findley; University of Texas at Arlington
August Noë; University of California Santa Cruz
Sam Trombone; Hamilton College
Kai Zuang; Brown University
and
John Ackerman; UConn
Mentors: Bernard Akwei, Rachel Bailey, Maxim Derevyagin, Luke Rogers, Alexander Teplyaev
publication: Rachel Bailey, Sara Costa, Maxim Derevyagin, Caleb Findley & Kai Zuang. Hamiltonians that realize perfect quantum state transfer and early state exclusion. Quantum Information Processing24, 51 (2025). https://doi.org/10.1007/s11128-025-04667-z
REU participants:
Bobita Atkins, Massachusetts College of Liberal Arts
Ashka Dalal, Rose-Hulman Institute of Technology
Natalie Dinin, California State University, Chico
Jonathan Kerby-White, Indiana University Bloomington
Tess McGuinness, University of Connecticut
Tonya Patricks, University of Central Florida
Genevieve Romanelli, Tufts University
Yiheng Su, Colby College
Mentors: Bernard Akwei, Rachel Bailey, Luke Rogers, Alexander Teplyaev
Eigenmaps are important in analysis, geometry and machine learning, especially in nonlinear dimension reduction.
Versions of the Laplacian eigenmaps of Belkin and Niyogi are a widely used nonlinear dimension reduction technique in data analysis. Data points in a high dimensional space \(\mathbb{R}^N\) are treated as vertices of a graph, for example by taking edges between points separated by distance at most a threshold \(\epsilon\) or by joining each vertex to its \(k\) nearest neighbors. A small number \(D\) of eigenfunctions of the graph Laplacian are then taken as coordinates for the data, defining an eigenmap to \(\mathbb{R}^D\). This method was motivated by an intuitive argument suggesting that if the original data consisted of \(n\) sufficiently well-distributed points on a nice manifold \(M\) then the eigenmap would preserve geometric features of \(M\).
Several authors have developed rigorous results on the geometric properties of eigenmaps, using a number of different assumptions on the manner in which the points are distributed, as well as hypotheses involving, for example, the smoothness of the manifold and bounds on its curvature. Typically, they use the idea that under smoothness and curvature assumptions one can approximate the Laplace-Beltrami operator of \(M\) by an operator giving the difference of the function value and its average over balls of a sufficiently small size \(\epsilon\), and that this difference operator can be approximated by graph Laplacian operators provided that the \(n\) points are sufficiently well distributed.
In the present work we consider several model situations where eigen-coordinates can be computed analytically as well as numerically, including the intervals with uniform and weighted measures, square, torus, sphere, and the Sierpinski gasket. On these examples we investigate the connections between eigenmaps and orthogonal polynomials, how to determine the optimal value of \(\epsilon\) for a given \(n\) and prescribed point distribution, and the dependence and stability of the method when the choice of Laplacian is varied. These examples are intended to serve as model cases for later research on the corresponding problems for eigenmaps on weighted Riemannian manifolds, possibly with boundary, and on some metric measure spaces, including fractals.
Approximation of the eigenmaps of a Laplace operator depends crucially on the scaling parameter \(\epsilon\). If \(\epsilon\) is too small or too large, then the approximation is inaccurate or completely breaks down. However, an analytic expression for the optimal \(\epsilon\) is out of reach. In our work, we use some explicitly solvable models and Monte Carlo simulations to find the approximately optimal value of \(\epsilon\) that gives, on average, the most accurate approximation of the eigenmaps.
Our study is primarily inspired by the work of Belkin and Niyogi “Towards a theoretical foundation for Laplacian-based manifold methods.”
Results are presented at the 2023 Young Mathematicians Conference (YMC) at the Ohio State University, a premier annual conference for undergraduate research in mathematics, and at the 2024 Joint Mathematics Meetings (JMM) in San Francisco, the largest mathematics gathering in the world.
Bobita Atkins
Ashka Dalal
Natalie Dinin
Jonathan Kerby-White
Tess Mcguinness
Tonya Patricks
Genevieve Romanelli
Yiheng Su
Working with Professor Sasha Teplyaev
Yiheng and Jonathan share their results.
Vievie and Tonya present their work.
Bobita, Ashka, and Natalie explain random eigencoordinates.
The University of Connecticut’s summer program brings together a small group of undergraduates to explore what it is like to do research in pure and applied mathematics. Over the course of 10 weeks, we follow research projects from beginning to end — starting with reading about the project, writing proofs/programs, performing calculations, and ending with writing up results. In the past, many of our projects have culminated in published articles and conference talks.
Applications will be accepted until the end of March, but early applications are strongly encouraged.
The program runs for 10 weeks, from late May to early August. Summer 2023 dates: 05/29/2023 — 08/05/2023
The REU program is primarily aimed at math and science majors, but your experience and interests are more important than your major. We primarily enroll students who have completed their sophomore or junior year, but sometimes we admit unusually well-qualified freshmen. We have NSF funding to support students who are U.S. citizens or permanent residents. This covers lodging and provides a stipend; the latter has previously been in the range of $4500-5000 for the summer. As this grant is intended to increase the participation of undergraduate students in mathematics research, we are particularly interested in applications from members of underrepresented groups, including women and minorities.
All applications are processed through the NSF REU application website, https://etap.nsf.gov. We will begin reviewing applications starting in early March; applications received after the deadline will be considered on a rolling basis.
Math REU groups from Amherst College, Tufts University, UConn, UMass and Yale University are getting together online on Thursday July 29th for a conference to share their summer research work. Check out the 2021 Math REU conference website
July 23rd: Masha Gordina, University of Connecticut
Title: Emmy Noether, Symmetry and the Calculus of Variations
July 16th: Kasso Okoudjou, Tufts University
Title: TBA
Abstract:
July 9th: Sasha Teplyaev, University of Connecticut
Title: Spectral Dimension of the Universe
Abstract:
We know that our usual space-time is four dimensional, but is it the same on a quantum scale? There is a recent physics theory that there is a so called dynamical dimensional reduction in quantum gravity. This talk will describe the basic mechanism for this dimension reduction, and a surprising connection to the talk by Chris Hayes.
July 2nd: Patricia Alonso-Ruiz, Texas A&M
Title: Fractals are also in the market
Abstract: How does a financial investor decide which trading strategy to apply? Analyzing and classifying financial data is crucial to make a decision. One general classification involves two types of price behaviors: trending or mean-reverting. In the former, increasing (or decreasing) returns will likely lead to further increasing (or decreasing) returns, while in the latter price increases will likely lead to price decreases (or vice versa).
In this talk we will discuss a way to mathematically describe these regimes and discover that fractals play a fundamental role in that description.
June 25th: Chris Hayes, University of Connecticut
Title: Fractals and Dirichlet forms
Abstract: We will explore some simple examples of fractals, discuss dimensions of self-similar sets and then look at the basic ingredient in doing analysis (calculus) on some fractals: the construction of a self-similar Dirichlet form.
June 18th: Emily Gunawan, University of Oklahoma
Title: Box-ball systems and Tableaux
Abstract: Box-ball systems give a combinatorial model of a soliton, or solitary wave. We discuss some results obtained by past REU students in this area.
June 11th: Oleksii Mostovyi, University of Connecticut
Title: Introduction to financial mathematics
Abstract: We introduce some foundational ideas of financial mathematics, including the first and second fundamental theorems of asset pricing.
June 4th: Luke Rogers, University of Connecticut
Title: Measurement
Abstract: Since its earliest days, mathematics has been used to measure things. Usually so that someone could tax them! But measuring even simple things like the length of a curve in the plane can present many challenges. We will walk through some of the difficulties one might encounter and learn a little about the mathematics that arises from them.
Math REU groups from Amherst College, UConn, UMass, Williams College and Yale University are getting together online on Thursday July 30th for a conference to share their summer research work. The conference website is at
Math REU groups from Amherst College, UConn, UMass, Williams College and Yale University are getting together online on Thursday July 30th for a conference to share their summer research work. The conference website is at