Author: Alexander Teplyaev

Gradients on Higher Dimensional Sierpinski Gaskets

Group Members

Luke Brown,  Giovanni E Ferrer SuarezKaruna Sangam.

Supervisors

Gamal MograbyDan KelleherLuke RogersSasha Teplyaev.

Overview

Laplacians have been well studied on post-critically finite (PCF) fractals. However, less is known about gradients on such fractals. Building on work by Teplyaev, we generalize results regarding the existence and continuity of the gradient on the standard Sierpinski Gasket to higher dimensional Sierpinski Gaskets. In particular, we find that, for functions with a continuous Laplacian, the gradient must be defined almost everywhere, and specify a set of points for which it is defined. Furthermore, we provide a counterexample on higher-dimensional Sierpinski gaskets where the Laplacian is continuous but the gradient is not defined everywhere. We conjecture that Hölder continuity of the Laplacian is a condition strong enough to guarantee that the gradient exists at each point.

Publication

Presentation

Poster

Spectral Analysis on Graphs Related to the Basilica Julia Set

Group Members

Courtney GeorgeSamantha Jarvis.

Supervisors

Dan KelleherLuke RogersSasha Teplyaev.

Overview

We analyze the spectra of a sequence of graphs constructed from the Schreier graphs of the Basilica group.  Our analysis differs from earlier work of Grigorchuk and Zuk in that it is based on a macroscopic decomposition of the graphs. This method gives precise information about the multiplicities of eigenvalues and, consequently, good information about the spectral measures of large graphs. It also permits a proof of the existence of gaps in the spectrum of limiting graphs.

Publication

Presentation

Poster

Spectrum of the Magnetic Laplacian on the Diamond Fractal

Group MembersIMG_5606

Stephen Loew, Madeline Hansalik, Aubrey Coffey

Supervisors

Luke Rogers, Antoni Brzoska

Overview

The diamond fractal is a fractal that is obtained in the following manner.  Start with a graph with two vertices and an edge and replace the edge with two new vertices connected to our original vertices to obtain a diamond shaped graph.   The diamond fractal is defined to be the limiting object after continuing with the edge replacement indefinitely.  In the project, the spectrum of magnetic Laplacian operators on graph approximations to the diamond fractal was computed.

Given a level n approximation to the fractal with known magnetic field strengths through cells and holes, it is possible to determine the net magnetic field through the cells and holes of the preceding graph approximations.  The spectral similarity relation between the operators on successive graph approximations was worked out, with the corresponding spectral decimation polynomial depending on the magnetic field strengths.  A poster and talk on this work was presented at the REU Mini-Symposium at UConn.

Publication

arXiv:1704.01609

Presentation

Magnetic Spectral Decimation

Poster

Archived 2015 Announcements

Alexander Teplyaev – The Spectral Dimension of the Universe

May 29, 2015

Professor Alexander Teplyaev will explain some ideas behind the notion of spectral dimension and how they are related to research being done in our department.

Masha Gordina – Random thoughts on Brownian motion

June 5, 2015

Professor Masha Gordina will talk about the fascinating history of the Brownian motion and its applications in the real world.

Keith Conrad – Continued Fractions

June 12, 2015

Professor Keith Conrad will talk about continued fractions, how to compute them, some of their properties, and how to answer seemingly unanswerable questions like this: if an unknown fraction is roughly 2.32558, what is it? (The answer is not 232558/100000.)

Thomas Laetsch – From Brownian motion cometh

June 19, 2015

Following Dr. Gordina’s talk developing Brownian motion, Thomas Laetsch will take us on a short drunkard’s walk through several theories stemming from or related to Brownian motion. R(E)U ready?

Joe Chen – Drunkard, Octopus, and Electrical Networks

June 26, 2015

Joe Chen  will summarize the main ideas behind electrical networks and describe two unexpected applications to probability.

Stochastic Stability of Planar Flows

Group Members

Lance Ford, Derek Kielty, Rajeshwari Majumdar, Heather McCain, Dylan O’ConnellREU2015-Stochastics

Supervisors

Joe P ChenFanNy Shum

Overview

We investigated systems of complex-valued ordinary differential equations (ODEs) that blows up in finite time, which we refer to as explosive systems. The goal is to understand for what initial conditions does the system explode and will the addition of noise stabilize it; that is, if we were to perturb the system with an additive Brownian motion, will the system of stochastic differential equation (SDE) still be explosive? In fact, we were able to prove a toy model of the stochastic Burgers’ equation to be ergodic; that is, the SDE is nonexplosive and it has a unique limiting distribution.

Presentation

Poster