Spectrum of the Magnetic Laplacian on the Diamond Fractal

Group MembersIMG_5606

Stephen Loew, Madeline Hansalik, Aubrey Coffey

Supervisors

Luke Rogers, Antoni Brzoska

Overview

The diamond fractal is a fractal that is obtained in the following manner.  Start with a graph with two vertices and an edge and replace the edge with two new vertices connected to our original vertices to obtain a diamond shaped graph.   The diamond fractal is defined to be the limiting object after continuing with the edge replacement indefinitely.  In the project, the spectrum of magnetic Laplacian operators on graph approximations to the diamond fractal was computed.

Given a level n approximation to the fractal with known magnetic field strengths through cells and holes, it is possible to determine the net magnetic field through the cells and holes of the preceding graph approximations.  The spectral similarity relation between the operators on successive graph approximations was worked out, with the corresponding spectral decimation polynomial depending on the magnetic field strengths.  A poster and talk on this work was presented at the REU Mini-Symposium at UConn.

Publication: Journal of Physics A: Mathematical and Theoretical, Volume 50, Number 32

arXiv:1704.01609

Presentation

Magnetic Spectral Decimation

Poster