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Abstract
The Laplacians for a large class of self-similar fractals and fractal graphs ex-

hibit a property called spectral decimation, in which the spectra of different levels of
approximation are related by a dynamical system involving a rational function. Ex-
panding upon the work of Malozemov and Teplyaev [1], we extend some aspects of
the spectral decimation method from the Laplacian operator to a magnetic Laplacian
operator, and use this to numerically investigate properties of the magnetic spectrum
of this operator on the diamond fractal. In particular, we identify the correct unitary
transformations and projections to obtain the aforementioned rational functions.

Diamond Fractal

• The (n+1)th approximating graph is generated by replacing each edge in the graph
of the nth level with a copy of the level 1 graph (i.e. lines become diamonds)
•We can represent this operation using an iterated function system (IFS) of four

contraction maps fi, 1 ≤ i ≤ 4, where each fi maps the diamond to a smaller
diamond. The diamond fractal is the unique, non-empty, compact set invariant
under the IFS: K =

⋃
fi(K)

Laplacian
• Laplacian

– The graph Laplacian at level n is an operator on functions given by

∆nu(x) =
∑
yvx

(
u(x)− u(y)

)
– This can be represented in matrix form as the difference of the graph’s degree

matrix and adjacency matrix. At level zero we have:

Degree Matrix Adjacency Matrix Laplacian Matrix[
1 0
0 1

] [
0 1
1 0

] [
1 −1
−1 1

]
– For our work, we normalize by replacing the aij entry with aij√

aiiajj
. This changes

the eigenvectors but not the eigenvalues of the matrix.
• Laplacian on the Diamond Fractal

– At any level n the graph Laplacian is a block matrix:[
A B
Bt D

]
∗ The A block corresponds to vertices from the (n− 1)th level.
∗ The D block corresponds to new vertices introduced at the nth level.
∗ The A and D blocks are diagonal.
∗ B and Bt correspond to connections between levels n− 1 and n.

– It is known that 4n∆n converges to an operator that is the correct replacement
for the usual Euclidean Laplacian on the Diamond Fractal.

Spectral Decimation for the Laplacian
On the Diamond fractal it is known that we can relate the spectrum of ∆n to ∆n−1
via the Schur complement. Making the standard computation

(∆n − λ)

[
u
v

]
=

[
A− λ B
Bt D − λ

] [
u
v

]
=

[
0
0

]
we see that if λ is not an eigenvalue of D then

Sλ = A− λ−Bt(D − λ)B = 0

where Sλ is the Schur complement.

Theorem 1. For the Diamond Fractal there exist rational functions ϕ0(λ) and ϕ1(λ)
such that Sλ = ϕ0(λ)∆n−1 − ϕ1(λ)I.

Corollary 1. If λ is not an eigenvalue of D and ϕ0(λ) 6= 0 then λ is an eigenvalue
of ∆n if and only if ϕ1(λ)ϕ0(λ)

is an eigenvalue of ∆n−1.

Magnetic Laplacian

•Magnetic Laplacian
– Approximating graph becomes a directed graph.
– Edges are weighted by eiθ in the direction of the edge and e−iθ in the opposite

direction, for some θ ∈ R.
– By convention, the field strength through a hole is the counterclockwise

oriented sum of the θ values on the edges around the hole.
– The Magnetic Laplacian is then given by

Mnu(x) =
∑
yvx

(
u(x)− eiθxyu(y)

)
,

where θxy corresponds to the edge from x to y.
– We may still make a block decomposition as we did for the Laplacian; blocksA

and D are unchanged, the eiθ factors appear in the off-diagonal blocks, which
are now B and B∗.

• Physically, the spectrum of the Magnetic Laplacian corresponds to energy levels
of a quantum particle confined to the Diamond Fractal and under the influence of
a magnetic field.

Spectral Decimation and Magnetic Laplacian
A variant of Spectral Decimation still works for Mn on the Diamond Fractal, but it
is not as simple as it was in the case of the Laplacian. Instead of fixed functions ϕ0

and ϕ1 we have functions that depend on the magnetic field strength.
The computation of the Schur complement for the diamond configuration with

all edge weights equal to eiγ is as follows:

M1 =

[
A B
B∗ D

]
, with A = D = (1− λ)I and B =

[
−eiγ
2

−e−iγ
2

−e−iγ
2

−eiγ
2

]
.

Then

Sλ =

[
1− λ− 1

2(1−λ)
− cos(2γ)
2(1−λ)

− cos(2γ)
2(1−λ) 1− λ− 1

2(1−λ)

]
=

cos (2γ)

2(1− λ)
M0 −

(
−2λ2 + 4λ− 1 + cos (2γ)

2(1− λ)

)
I

It does not immediately follow that this method can be used to reduce Mn to
Mn−1, but there is a method to do this. In order to prove this, we generalize results
of [1], where spectral decimation on operators corresponding to pieces of a graph
can be “glued” together to obtain spectral decimation on the operator for the whole
graph. The additional feature we need is that each piece may be gauge-transformed,
i.e. conjugated by a unitary matrix, before gluing. By solving an auxiliary problem
about writing a general field as a sequence of gauge transforms from level to level,
we obtain spectral decimation for the Diamond fractal.

Gauge transforms from level to level
In order to use our spectral decimation approach we must write our magnetic field
as a sequence of fields in which the level k field acts as a gauge transform on all
cells smaller than level k. The following diagram illustrates this for two levels.

Generalizing from this diagram we show

Lemma 1. Fix a level n. Given a magnetic field in which the field strength through
a hole depends only on the level of the hole, let δj denote the field strength through
each jth level hole, and define

µj = δj +

n∑
i=j+1

22i−(2j+1)δi.

Define a field of strength µj on each j-level cell, and extend it to act as a gauge
transform on all smaller cells. Then the original field is the sum of the µj fields.

From our gauge-transformed gluing result, we then have the following spectral
decimation theorem on the diamond fractal.

Theorem 2. Suppose {λn} is a sequence such that for each n, λn 6= 1 and µn 6∈ π
2Z.

Then for each n, λn is an eigenvalue of Mn if and only if R(λn, µn) is an eigenvalue
of Mn−1, where

R(λ, µ) =
4λ− 2λ2 − 1

cos (µ/2)
+ 1.

Remark 1. The exceptional case λn = 1 does correspond to eigenvalues, and we can
calculate their multiplicity. Another exceptional case occurs when ϕ0(λ) = 0; this
does not immediately lend to eigenvalues.

This theorem gives an algorithm for finding eigenvalues of the Laplacian on
the Diamond Fractal. For a given magnetic field defined by the sequence {δi}ni=1,
compute {µi}ni=1. Then for each i:

1. For every eigenvalue λ(i−1)k of Mi−1, find its two preimages under R(·, µi).
2. Incorporate 1

3(4− 4i) + 4i copies of the exceptional eigenvalue λ = 1.
3. Re-scale all eigenvalues by 4n.
4. Take the limit as n→∞.

Steps (1) and (2) generate the un-normalized spectrum on level n. Step (3) re-
normalizes the eigenvalues. Recall 4n∆n converges to the Laplacian on the Diamond
Fractal; the same scaling holds for the magnetic Laplacian.

As a special case we consider δj to be proportional to area of the jth level cell.
For a suitable embedding of the fractal, the area occupied by the jth level cells may
be taken to be geometrically decreasing, so δj = 41−jAj for some A < 1. Thus

µj = 21−2j
(
An+1 + Aj+1 − Aj

)
.

Spectral Plots
Eigenvalue Counting Function of Mn for n ∈ {1, 2, 3, 4}

First 50 eigenvalues (left) and full spectrum (right) of M5

Animations of these plots allow us to see how permissible energy levels of a
particle in the diamond fractal vary with the strength of an applied magnetic field.
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