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Introduction

Definition: A contraction f on a metric space
(X, d) is a map f : X → X such that ∃q ∈ [0, 1),
∀a, b ∈ X , where d(f (a), f (b)) ≤ q · d(a, b).
Definition: An iterated function system
(IFS) is a finite set of contractions {fi} on a com-
plete metric space. It is a fact that the Hutchin-
son operator on non-empty compact sets A, defined
as f (A) = ∪ifi(A), has a fixed point K such that
f (K) = K. Frequently K is called the fractal of
the IFS. An example of such a K is the Sierpinski
carpet. One can approximate K by composing f
with itself repeatedly. Set fn := f ◦ f ◦ · · · ◦ f . Let
I2 = [0, 1]2 and (X, d) be R2 with the Euclidean
metric. Define Fn = fn(I2). Visually:

level = 0 level = 1 level = 2 level = 3

Definition: The (total) energy of a ‘nice’ function
f (x) on domain Ω with ‘nice’ boundary is:

EΩ(f ) =
∫

Ω
|∇f |2

On Fn, we set boundary conditions: f (0, x) = 0,
f (1, x) = 1, and ∂f

∂n = 0 for y ∈ {0, 1} and re-
quire differentiability and finite energy on the inte-
rior. There is a unique harmonic function un that
satisfies the conditions and minimizes EFn.
Definition: The effective resistance of Fn is de-
fined as Rn = (EFn(un))−1.
Intuitively, we expect the resistance to go up as n→
∞. Imagine the holes in Fn as obstacles in a river.
The more obstacles, the higher the resistance is; it is
more difficult for water to travel through the region.
Here is an approximation of u4 on F4:

Theorem: (Barlow and Bass, 1990) There exists a
constant ρ ≥ 1 such that:

1
4
ρn ≤ Rn ≤ 4ρn n ≥ 0

ρ is called the resistance scaling factor, since it
implies that Rn ≈ ρRn−1. The result proved by us-
ing graph approximations to build a ‘quilt’ function
that is comparable to the energy-minimizing func-
tion - this was highly dependent on the rotational
and reflective symmetry of the fractal.

Affine Carpet Resistances

The contractions for the SC are identical but with
different fixed points. For the k-affine carpet we
contract the four corner squares by k, and the four
remaining contractions map squares to rectangles,
as in this 1

4-affine carpet:

level = 1 level = 2

The key difficulty is that Barlow and Bass made
heavy use of the rotational symmetry of squares and
uniform edge weights in graph approximations. In
affine carpets there are cells of different scales and
rectangular eccentricities, rectangles are not diag-
onally symmetric, and graph approximations have
heterogeneous weights. We have numerically inves-
tigated the edge weights for the graph approxima-
tions and examined several approaches to resolving
the difficulties, but have not yet solved the problem.
There is one numerical observation:
Conjecture: Let R1

n and R2
n be the effective re-

sistances of the affine carpet mapped to 1 × k1, k2
rectangles where ki ∈ (0,∞). Then:

R1
n+1
R1
n

= R2
n+1
R2
n

See Numerical Results for details.

Weighted Carpet Resistances

Consider the SC, instead of no center square, we
weigh it differently from the other eight squares. Let
t be the (non-negative) weight of the central cell, and
s the weights of the other 8 cells, and set 8s+ t = 1
so that the total mass is 1. Note that Fn in this
case is a grid imposed on [0, 1]2 with cells of size
(1/3n)2. Let C be a cell in Fn, then C is the image
of a sequence of contractions; let g be the central
contraction, and suppose g was applied k times to
[0, 1]2 to reach C. We define µn(C) = tksn−k. Here
are approximate images of µn and u4 for t = 0.001:

We believe we can prove the following, but have not
completed our write-up:
Conjecture: For any t ∈ [0, 1/9].

1
32
ρn ≤ Rn ≤ 32ρn

Computation Technique

Averaging property: Let G = (V,E) be a
connected graph with a symmetric weight function
g : E → [0,∞). Let I ⊂ V be the interior of G,
and let g : (V \ I)→ R be boundary data. We call
the unique function f such that f |V \I ≡ g and:

f (x) =
 ∑

(y,x)∈E
g(y, x)f (y)

 /
 ∑

(y,x)∈E
g(y, x)


for all x ∈ I a graph harmonic function.
Method of Relaxations: To approximate un

on Fn, we consider Gn or Dn with reciprocals of dis-
tances as edge weights. An arbitrary initial function
is defined that matches the boundary data. Then,
every interior vertex’s function value was replaced
with the weighted average of its neighbor’s function
values. This is called a relaxation. As the num-
ber of relaxations approaches infinity, the function
on the shape approaches the true harmonic function.

Numerical Results

Since within one affine carpet, there are rectangular
cells of varying ‘eccentricities’, we had to analyze
how ρ ≈ Rn

Rn−1
changes with the amount of stretching

the carpet experienced. The following graphs show
how ρ appears to stay constant, regardless of stretch:

0.25 Affine Cross Carpet
Level 1x0.125 1x0.25 1x0.5 1x1 1x2 1x4 1x8
1 2.495 2.495 2.495 2.495 2.495 2.495 2.495
2 2.838 2.838 2.838 2.838 2.838 2.839 2.839
3 3.143 3.143 3.144 3.143 3.143 3.143 3.143
4 3.444 3.444 3.445 3.443 3.444 3.444 3.444
5 3.760 3.759 3.760 3.746 3.742 3.831 3.830

0.25 Affine × Carpet
Level 1x0.125 1x0.25 1x0.5 1x1 1x2 1x4 1x8
1 1.157 1.157 1.157 1.157 1.157 1.157 1.157
2 1.332 1.332 1.332 1.332 1.332 1.332 1.332
3 1.495 1.495 1.495 1.494 1.495 1.495 1.495
4 1.662 1.662 1.662 1.658 1.662 1.662 1.662
5 1.841 1.840 1.841 1.832 1.841 1.841 1.841
6 2.032 2.033 2.034 2.034 2.034 2.034 2.034

Recall that if ρn ≈ Rn, then n log(ρ) ≈ log(Rn)
gives us a way to check if linear behavior numerically
supports that a ρ exists; here is an (n, log(Rn)) plot:

This is consistent with the hypothesized relation-
ship, but more data is still needed.
Next steps:
Compute deeper-level data for affine carpets and
weighted carpets for better numerical evidence,
Prove conjectures related to weighted carpets,
Find a way to get around the symmetry issue for
affine carpets.
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