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Definition (Spectrum [Str06])
The spectrum of a finite dimensional operator is the set of
eigenvalues of that operator, denoted σpxq.
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Self Similar Groups

Definition (Restriction of an automorphism [KSW12])
Let X˚ be an infinite tree over an alphabet X˚ Let g be a tree
automorphism of X˚, and let x P X. Then xX˚ is naturally
isomorphic to X˚. Since g is an automorphism, restricting g to
xX˚ gives an automorphism on xX˚. In turn, this gives
another automorphism on X˚, which we denote g|x.

g g|1
H

1 0

11 10 00 01

1

11 10

110 111 100 101
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Self Similar Groups

Definition (Self similar groups [KSW12; Nek05])
Let G be a group that acts faithfully on X˚. Then G is a self
similar group if, for all g P G and x P X there is a h P G and
y P X such that gpxwq “ yhpwq. Equivalently, for all g P G and
x P X, we have g|x P G.
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Example: The Hanoi Towers Group

The Hanoi Towers game is played on k pegs with n disks. The
disks are labeled 1 through n. Players can move disks from one
adjacent peg to another, but cannot place a larger disk on top
of a smaller disk. [GS08]

Let X “ t0, 1, . . . , k ´ 1u. Then we can uniquely represent each
game state as a word in Xn.

1200 112
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Example: The Hanoi Towers Group

Definition (The Hanoi Towers group [GS08])
The Hanoi Towers group H is generated by a, b, c, where a
represents switching a disk between pegs 0 and 1, b represents
switching a disk between 0 and 2, and c represents switching
between 1 and 2.

The Hanoi Towers group is defined in terms of its action on the
set of game states of the Hanoi Towers game. Note that this
action is always unique due to the rules of the game
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Example: The Hanoi Towers Group

a
ÝÝÑ

0200

b
ÝÝÑ

1200 1000

c
ÝÝÑ

2200
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Example: The Hanoi Towers Group

Since we can represent each game state as a word over X “

t0, 1, 2u, H also acts on X˚.

H

1 0 2

10 11 12 00 01 02 21 20 22

We can specify a group element by its permutation on the first
level and what it restricts to on lower levels. For Hanoi:

a “ p0 1qpid, id,aq

b “ p0 2qpid, b, idq

c “ p1 2qpc, id, idq
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Schreier graphs

Definition (Schreier graphs [GS08])
Let G be a self similar group acting on X˚. Let S be a finite
generating set of G. Then the nth Schreier graph of G with
respect to S is a directed graph with vertices Xn and an edge
from x to y if there is a g P S such that gx “ y.
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Spectral Similarity

Definition (Spectral similarity [MT03])
We call an operator H spectrally similar to an operator H0 if
we have complex functions ϕ0 and ϕ1 such that, when defined,

U˚pH ´ zq´1U “ pϕ0pzqH0 ´ ϕ1pzqq
´1

Spectral similarity is a way to relate the spectra of two different
operators. If we take

Rpzq “
ϕ1pzq

ϕ0pzq

we see that z P σpHq means Rpzq P σpH0q.
In our context, this means relating operators on graph approx-
imations of fractals or Schreier graphs of self-similar groups.
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Example of Spectral Similarity

The probability Laplacian of n-level approximation of the Sier-
pinski gasket is spectrally similar to the (n ´ 1)-level approxi-
mation with Rpzq “ zp5´ 4zq.

σpSG1q “ t
3
2 ,

3
2 , 0u σpSG2q “ t

3
2 ,

3
2 ,

3
2 ,

3
4 ,

3
4 , 0u

Plugging the values from σpSG2q into R gives you the values
of σpSG1q. This gives a clear representation of a simple case of
spectral similarity.
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The Grigorchuk Method: Group Representation

The action of H on level n induces a permutational 3n-
dimensional representation,

ρn : H Ñ GLp3n,Cq of H

Denote ρnpaq “ an, ρnpbq “ bn, and ρnpcq “ cn

We represent the generators with permutational matrices recur-
sively by,

a0 “ b0 “ c0 “ r1s

an`1 “

»

–

0 1 0
1 0 0
0 0 an

fi

fl bn`1 “

»

–

0 0 1
0 bn 0
1 0 0

fi

fl cn`1 “

»

–

cn 0 0
0 0 1
0 1 0

fi

fl

where each block is of size 3n ˆ 3n for n ě 0.

[GS08]
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The Grigorchuk Method: The Adjacency Matrix

The Grigorchuk method uses the representation of each gener-
ator to create an adjacency matrix that describes the action on
each sequence Schreier graphs.

For the Hanoi Towers group, the adjacency matrix is

∆n “ an ` bn ` cn

Equivalently,

∆n “

»

–

cn 1 1
1 bn 1
1 1 an

fi

fl
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The Grigorchuk Method: The Adjacency Matrix

The adjacency for level 2 of the Hanoi Towers group;

∆2 “

»

—

—

—

—

—

—

—

—

—

—

—

–

c 0 0 1 0 0 1 0 0
0 0 1 0 1 0 0 1 0
0 1 0 0 0 1 0 0 1
1 0 0 0 0 1 1 0 0
0 1 0 0 b 0 0 1 0
0 0 1 1 0 0 0 0 1
1 0 0 1 0 0 0 1 0
0 1 0 0 1 0 1 0 0
0 0 1 0 0 1 0 0 a

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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Finding the spectrum

We now introduce a new variable x, [GNS15]. Define
∆npxq “ ∆n ´ xI, and the spectrum of ∆n is all x where
|∆npxq| “ 0.
For example, level 2, we have

»

—

—

—

—

—

—

—

—

—

—

—

–

c ´ x 0 0 1 0 0 1 0 0
0 ´x 1 0 1 0 0 1 0
0 1 ´x 0 0 1 0 0 1
1 0 0 ´x 0 1 1 0 0
0 1 0 0 b ´ x 0 0 1 0
0 0 1 1 0 ´x 0 0 1
1 0 0 1 0 0 ´x 1 0
0 1 0 0 1 0 1 ´x 0
0 0 1 0 0 1 0 0 a ´ x

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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Moving to a two-dimensional dynamic system

Our goal is to write the determinant of ∆npxq in terms of the
determinant of ∆n´1pxq. Unfortunately, the linear algebra does
not allow us to do this (at least, not yet). [GS08]

Instead, we take ∆npx, yq “ ∆npxq ´ p1´ yqdn, where

dn`1 “

»

–

0 1n 1n
1n 0 1n
1n 1n 0

fi

fl

For example:

∆1px, yq “

»

–

1´ x y y
y 1´ x y
y y 1´ x

fi

fl
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Auxiliary spectrum

Now we can express the determinant of ∆npx, yq in a recursive
formula

|∆npx, yq| “ Pnpx, yq|∆n´1pF px, yqq|

where F px, yq “ px1, y1q is a rational function in x and y and
Pnpx, yq is a polynomial. [GS08]

The zeroes of ∆npx, yq give us the auxiliary spectrum

Images of the auxiliary spectrum of levels 1, 2, and 3 [GS06].
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Converting from the auxiliary spectrum to the Schreier
spectrum

Note that F takes points in the auxiliary spectrum to points in
the auxiliary spectrum. Our new goal is to map the auxiliary
spectrum to the Schreier spectrum.

R2 R2

R R

F

Ψ Ψ

f

Formally, we want to find Ψ and f that make this diagram commute.

As it turns out, Ψ and f do exist, and fpxq “ x2´x´3. [GS08]
If x P σp∆npxqq, then fpxq P σp∆n´1pxqq. We can use this fact
to find the spectrum for any level.
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Future research

Extend a theorem of Malozemov and Teplyaev [MT03] about
gluing spectrally similar objects to self similar groups.

Extend a theorem of Nekrashevych and Teplyaev [NT08] about
symmetries of an object and spectral similarity to self similar
groups.

Unify the above results to explain when a semi-conjugacy map
for the Grigorchuk method exists and when it does not.
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Thank you!
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