Geodesic Interpolation on Sierpinski Simplices

Caitlin M. Davis, Laura A. LeGare, and Cory W. McCartan

Introduction

In Euclidean space, two sets may be interpolated along straight lines connecting all pairs of points in the two sets. In more general spaces, interpolation happens along geodesics-shortest paths parameterized at unit speed. We study interpolation on Sierpinski simplices, which generalize the wellknown Sierpinski triangle. In addition to finding an upper bound on the number of geodesics, we show some interesting self-similarity properties of interpolant measures, and prove an analogue of the classical Brunn-Minkowski inequality for interpolant sets

The Sierpinski \boldsymbol{n}-Simplex

The Sierpinski n-simplex $S_{n} \subseteq \mathbb{R}^{n}$ is the attractor of the iterated function system (IFS)

$$
F_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad F_{i}(x)=\frac{1}{2}\left(x+q_{i}\right)
$$

for $\left\{q_{0}, \ldots, q_{n}\right\}$, the vertices of a unit n-simplex. Any point $x \in S_{n}$ can be expressed uniquely as a convex combination of q_{0}, \ldots, q_{n} :

$$
x=c_{0} q_{0}+\cdots+c_{n} q_{n} .
$$

$\left(c_{0}, \ldots, c_{n}\right)$ are the barycentric coordinates of x, and we denote c_{i} by $[x]_{i}$.

S_{2}, with barycentric coordinates of highlighted points.
S_{n} has no volume in \mathbb{R}^{n}, so we measure sets using a self-similar measure μ_{n} defined by $n+1$ equal weights.

1

Geodesics

The intrinsic metric $d(x, y)$ is defined to be the length of a geodesic from x to y. The self-similarity and symmetry of S_{n} relate barycentric coordinates to geodesic distance:
Proposition. Let x be a point and y the boundary point of its cell. Then $d(x, y)=[x]_{i}-[y]_{i}$. To address geodesic non-uniqueness, we define:

P_{1} paths pass through the common bridge point of the P_{1} paths pass through cells containing x and $y ; P_{2}$ paths do not.
For points $x, y \in S_{n}$, we use the following lemmas in the proof of the theorem below:

- There are at most two geodesics between x and a boundary point of its containing cell.
- There exist P_{2} paths between x and y passing through at most two pairs of bridge points. - If there exist P_{2} paths between x and y through two pairs of bridge points, there are exactly two P_{2} paths from x to y.
Theorem. There exist at most eight distinct geodesics between any two points in S_{n}.
 paths-4 total geodesics.

(b) $4 P_{1}$ paths and $2 P_{2}$ paths-6 total geodesics.

Cell-to-point Interpolation

Let $A, B \subseteq S_{n}$. We define the interpolant Z_{t} $A \times B \rightarrow \bar{S}_{n}$ for all $t \in[0,1]$ as

$$
Z_{t}(a, b)=\hat{\gamma}_{a \rightarrow b}(t)
$$

where $\hat{\gamma}_{a \rightarrow b}$ is a geodesic from a to b.
We want to study the "density" of the interpolant set when A is a cell and B is a single point b, so we define a pullback measure on the common path:

$$
\eta_{t}(X)=\mu_{n}\left(Z_{t, b}^{-1}(X)\right) \quad \text { for all } t
$$

The connection between geodesic distance and barycentric distance means that points with equal i-th barycentric coordinate coincide when interpolated. So the interpolant density is essentially a projection of the measure μ_{n}; we call the projection ν_{n}.

1 cell
n cells
Illustration of the projection measure ν_{n} for a cell in S_{n}. Theorem. The measure η_{t} is self-similar, with weights $\frac{1}{n+1}$ and $\frac{n}{n+1}$.

General Interpolation

When A and B are cells, we define a pullback measure on the common path:

$$
\eta_{t}(X)=\mu_{n} \times \mu_{n}\left(Z_{t}^{-1}(X)\right)
$$

The same barycentric results as above indicate that we can view η_{t} as the projection of the product measure $\nu_{n} \times \nu_{n}$ along lines of varying slope.

Schematic of the product measure $\nu_{n} \times \nu_{n}$.

Since η_{t} is a projection of a self-similar product measure, it is also self-similar. The changing slope of the projection over time means that the self-similarity changes as well:

Interpolation Inequalities

Abstract

We can bound the cumulative measure function $g(x)=$ $\nu_{n}([0, x])$ by the function $\Phi(x)=\left(1-(1-x)^{p}\right)^{1 / p}$ using self-similarity, for a sufficiently large p. Substituting this bound into the one-dimensional BrunnMinkowski inequality on the Bounding $g(x)$. common path yields our interpolation inequality. Theorem. Let $A, B \subseteq S_{n}$ be disjoint connected sets. Then for all $t \in(0,1)$, $1-\left(1-\mathcal{H}^{1}\left(Z_{t}(A, B)\right)\right)^{d_{n}} \geq(1-t) \cdot \mu_{n}(A)^{d_{n}}+t \cdot \mu_{n}(B)^{d_{n}}$, where $d_{n}=\frac{\log \frac{1}{2}}{\log \frac{n}{n+1}}$.

\section*{Acknowledgements}

[^0] Gabbard.

[^0]: This project was supported by NSF grant DMS-1659643. We would like to acknowledge the support and guidance of Dr. Luke Rogers, Sweta Pandey, Gamal Mograby, and Malcolm

