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Introduction

In Euclidean space, two sets may be interpolated
along straight lines connecting all pairs of points
in the two sets. In more general spaces, interpo-
lation happens along geodesics—shortest paths pa-
rameterized at unit speed. We study interpolation
on Sierpinski simplices, which generalize the well-
known Sierpinski triangle. In addition to finding an
upper bound on the number of geodesics, we show
some interesting self-similarity properties of inter-
polant measures, and prove an analogue of the classi-
cal Brunn–Minkowski inequality for interpolant sets.

The Sierpinski n-Simplex

The Sierpinski n-simplex Sn ⊆ Rn is the attractor
of the iterated function system (IFS)

Fi : Rn → Rn, Fi(x) = 1
2(x + qi),

for {q0, . . . , qn}, the vertices of a unit n-simplex.
Any point x ∈ Sn can be expressed uniquely as a
convex combination of q0, . . . , qn:

x = c0q0 + · · · + cnqn.

(c0, . . . , cn) are the barycentric coordinates of x,
and we denote ci by [x]i.
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S2, with barycentric coordinates of highlighted points.

Sn has no volume in Rn, so we measure sets us-
ing a self-similar measure µn defined by n + 1 equal
weights.

1
1/3 1/3

1/3

1/9 1/9 1/9 1/9

1/9 1/9

1/9 1/9

1/9

· · ·
The measure µ2 of cells in S2.

Geodesics

The intrinsic metric d(x, y) is defined to be the
length of a geodesic from x to y. The self-similarity
and symmetry of Sn relate barycentric coordinates
to geodesic distance:
Proposition.Let x be a point and y the bound-
ary point of its cell. Then d(x, y) = [x]i − [y]i.
To address geodesic non-uniqueness, we define:
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P1 paths pass through the common bridge point of the
cells containing x and y; P2 paths do not.

For points x, y ∈ Sn, we use the following lemmas
in the proof of the theorem below:
•There are at most two geodesics between x and a
boundary point of its containing cell.

•There exist P2 paths between x and y passing
through at most two pairs of bridge points.

• If there exist P2 paths between x and y through
two pairs of bridge points, there are exactly two
P2 paths from x to y.

Theorem. There exist at most eight distinct
geodesics between any two points in Sn.
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(a) 4 P1 paths and no P2
paths—4 total geodesics.
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(b) 4 P1 paths and 2 P2
paths—6 total geodesics.
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(c) 4 P1 paths and 4 P2
paths—8 total geodesics.

Cell-to-point Interpolation

Let A, B ⊆ Sn. We define the interpolant Zt :
A × B → Sn for all t ∈ [0, 1] as

Zt(a, b) = γ̂a→b(t),
where γ̂a→b is a geodesic from a to b.
We want to study the “density” of the interpolant
set when A is a cell and B is a single point b, so we
define a pullback measure on the common path:

ηt(X) = µn(Z−1
t,b (X)) for all t.

The connection between geodesic distance and
barycentric distance means that points with equal
i-th barycentric coordinate coincide when interpo-
lated. So the interpolant density is essentially a pro-
jection of the measure µn; we call the projection νn.
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Illustration of the projection measure νn for a cell in Sn.

Theorem. The measure ηt is self-similar, with
weights 1

n+1 and n
n+1.

General Interpolation

When A and B are cells, we define a pullback mea-
sure on the common path:

ηt(X) = µn × µn(Z−1
t (X)).

The same barycentric results as above indicate that
we can view ηt as the projection of the product mea-
sure νn × νn along lines of varying slope.
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Schematic of the product measure νn × νn.

Since ηt is a projection of a self-similar product mea-
sure, it is also self-similar. The changing slope of the
projection over time means that the self-similarity
changes as well:

0 1
4

1
2

3
4 1

(a) t = 0.10
0 1

4
1
2

3
4 1

(b) t = 0.50

0 1
4

1
2

3
4 1

(c) t = 0.75
0 1

4
1
2

3
4 1

(d) t = 1.00

Density of ηt at various values of t.

Interpolation Inequalities
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Bounding g(x).

We can bound the cumula-
tive measure function g(x) =
νn([0, x]) by the function
Φ(x) = (1 − (1 − x)p)1/p

using self-similarity, for a
sufficiently large p. Sub-
stituting this bound into
the one-dimensional Brunn–
Minkowski inequality on the
common path yields our interpolation inequality.
Theorem. Let A, B ⊆ Sn be disjoint connected
sets. Then for all t ∈ (0, 1),
1−(1−H1(Zt(A, B)))dn ≥ (1−t)·µn(A)dn+t·µn(B)dn,

where dn = log 1
2

log n
n+1

.
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