

MOTIVATING QUESTION

The Sierpinski Gasket (SG) is a classical example of a self-similar fractal, and has been well studied. What has not been as well studied is the harmonic Sierpinski Gasket ($SG_{\mathcal{H}}$) (see Figure 2), which is the embedding of SG into \mathbb{R}^2 . The goal for our project was to better understand $SG_{\mathcal{H}}$ by proving that Laplacian eigenfunctions on $SG_{\mathcal{H}}$ are Lipschitz continuous.

PCF SELF-SIMILAR SETS

A self-similar set, K, is defined using an iterated function system F_1, \ldots, F_N of contractions on a complete metric space (X, d), where K is the unique non-empty compact fixed point of this iterated function system, i.e. $K = \bigcup_{i=1}^{n} F_i K$. (see Figure 1)

For a word $w = w_1 w_2 \cdots w_n$ with $w_j \in \{1, \ldots, N\}$ we define the map $F_w = F_{w_1} \circ F_{w_2} \circ \cdots \circ F_{w_n}$.

Figure 1: First, third, and fifth iteration of the Sierpinski gasket iteration

A **post-critically finite** (p.c.f) self-similar set is one for which there exists a finite set $V_0 \subset K$, such that for words $w \neq w'$ and |w| = |w'|, $F_w K \cap F_{w'} K \subset F_w V_0 \cap F_{w'} V_0$. We call V_0 the boundary of K. Further, we require that each boundary point be a fixed point of some F_i . From V_0 , we define $V_m = \bigcup_{|w|=m} F_w V_0$ and $V_* = \bigcup_m V_m$.

REGULAR HARMONIC STRUCTURE

A regular harmonic structure consists of a vector of resistance scalings (r_1, \ldots, r_N) , with each $r_i \in (0, 1)$, and an energy form on functions on V_0 denoted $\mathcal{E}_0(u, v)$. From \mathcal{E}_0 , we can iteratively define an energy \mathcal{E}_m on V_m , and finally arrive at a resistance form on functions on V_* by letting $\mathcal{F} = \{u : \lim_{m \to \infty} \mathcal{E}_m(u, u) < \infty\} \text{ and } \mathcal{E}(u, v) = \lim_{m \to \infty} \mathcal{E}_m(u, v) \text{ for } u, v \in \mathcal{F}.$ We call a function harmonic if it minimizes \mathcal{E}_m for all $m \ge 1$ given values on V_0 . From these we construct the harmonic spline ψ_p which is 1 at $p \in V_1 \setminus V_0$ and zero otherwise on V_1 .

LAPLACIAN AND GREEN'S FUNCTION

Let μ be a Borel regular probability measure on K. We define a **Laplacian** on K as follows: For $u \in \mathcal{F}$ and $f \in L^p(\mu)$, we say that $u \in \text{dom}_{L^p} \Delta_{\mu}$ and $\Delta_{\mu} u = f$ if

$$\mathcal{E}(u,v) = -\int_{K} f v \, d\mu$$
 for al

We also have a Green's operator G which inverts the Laplacian, and an associated Green's function with the form

$$g(x,y) = \sum_{m=0}^{\infty} \sum_{|w|=m} r_w \sum_{p,q \in V_1 \setminus V_0} h$$

where $r_w = r_{w_1} \dots r_{w_n}$.

LIPSCHITZ CONTINUITY ON PCF FRACTALS Anchala Krishnan¹, Benjamin York², Gamal Mograby³, and Luke Rogers³ ¹University of Washington Bothell, ²Bowdoin College, and ³University of Connecticut

 $||v \in \mathcal{F} \text{ with } v|_{V_0} = 0$

 $h_{p,q} \psi_p(F_w^{-1}(x)) \psi_q(F_w^{-1}(y)),$

RESULTS

CONCLUSION

Regarding our motivation, we were able to partially answer our motivating question by proving that L^p Laplacian functions of $SG_{\mathcal{H}}$ are α -Hölder continuous. However, we were able to go beyond our initial goals by proving a result for a broad class of p.c.f. self-similar sets beyond $SG_{\mathcal{H}}$, such as the unit interval and the Sierpinski gasket.

We hope to extend our technique to prove Lipschitz continuity for Laplacian eigenfunctions on $SG_{\mathcal{H}}$ by applying G^2 or G^3 to Δ_{μ} . We also hope to generalize our current results to a class of finitely ramified self-similar sets, or to general self-similar sets expressed by harmonic coordinates.

Theorem: Suppose K is a p.c.f. self-similar set in (X, d) and supports a regular harmonic structure such that the functions F_i^{-1} are Lipschitz and the harmonic splines ψ_p are α -Hölder continuous. Let L_w be the Lipschitz constant of F_w^{-1} and define

$$\Psi_{\alpha}(x,y) = \sum_{m=0}^{\infty} \sum_{|w|=m} r_w L_w^{\alpha} \mathbb{1}_{F_w K}(x)$$

where $\mathbb{1}_{F_wK}$ is the indicator function on F_wK . If $u \in \dim_{L^p} \Delta_{\mu}$ and $\Psi_{\alpha}(x, \cdot) \in L^{p'}(\mu)$ uniformly in x for conjugate exponents p and p', then u is α -Hölder continuous with

$$|u(x) - u(x')| \le C ||\Delta_{\mu} u||_p \sup_{x \in K} ||\Psi_{\alpha}(x, u)||_{X \in K}$$

Corollary: If K is as in the theorem above, and $\Psi_{\alpha}(x, y)$ is in $L^{1}(d\mu(y))$ uniformly with respect to x then Laplacian eigenfunctions and the heat kernel are α -Hölder.

Method: Since G inverts the Laplacian, it follows that $G\Delta_{\mu}u = u$. Thus, we show the α -Hölder continuity of u by showing that $G\Delta_{\mu}u$ is α -Hölder continuous. The advantage of this method is that it allows us to make use of the Green's function.

Figure 2: Harmonic Sierpinski Gasket

FUTURE RESEARCH

ACKNOWLEDGEMENTS

We would like to thank Sasha Teplyaev for his support throughout this project. This project has been supported by NSF DMS-1659643, REU Site: Mathematics REU at UConn.

 $x)\mathbb{1}_{F_wK}(y),$

 $\cdot)\|_{p'}d(x,x')^{\alpha}.$

REFERENCES

[1] Jun Kigami. Analysis on Fractals, volume 143 of Cambridge Tracts in Mathematics. Cambridge University Press, 2001.

[2] Robert S. Strichartz. *Differential equations on fractals:* a tutorial. Princeton University Press, 2006.