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MOTIVATING QUESTION
The Sierpinski Gasket (SG) is a classical example of a self-similar fractal, and has been well studied.
What has not been as well studied is the harmonic Sierpinski Gasket (SGH) (see Figure 2), which is
the embedding of SG into R2. The goal for our project was to better understand SGH by proving that
Laplacian eigenfunctions on SGH are Lipschitz continuous.

PCF SELF-SIMILAR SETS
A self-similar set, K, is defined using an iterated function system F1, . . . , FN of contractions on a com-
plete metric space (X, d), whereK is the unique non-empty compact fixed point of this iterated function

system, i.e. K =
N⋃
i=1

FiK. (see Figure 1)

For a word w = w1w2 · · ·wn with wj ∈ {1, . . . , N}we define the map Fw = Fw1
◦ Fw2

◦ · · · ◦ Fwn
.

Figure 1: First, third, and fifth iteration of the Sierpinski gasket iteration

A post-critically finite (p.c.f) self-similar set is one for which there exists a finite set V0 ⊂ K, such that
for words w 6= w′ and |w| = |w′|, FwK ∩ Fw′K ⊂ FwV0 ∩ Fw′V0. We call V0 the boundary of K. Further,
we require that each boundary point be a fixed point of some Fi. From V0, we define Vm = ∪|w|=mFwV0
and V∗ = ∪mVm.

REGULAR HARMONIC STRUCTURE
A regular harmonic structure consists of a vector of resistance scalings (r1, . . . , rN ), with each ri ∈ (0, 1),
and an energy form on functions on V0 denoted E0(u, v). From E0, we can iteratively define an energy
Em on Vm, and finally arrive at a resistance form on functions on V∗ by letting
F = {u : limm→∞ Em(u, u) <∞} and E(u, v) = limm→∞ Em(u, v) for u, v ∈ F .
We call a function harmonic if it minimizes Em for allm ≥ 1 given values on V0. From these we construct
the harmonic spline ψp which is 1 at p ∈ V1 \ V0 and zero otherwise on V1.

LAPLACIAN AND GREEN’S FUNCTION
Let µ be a Borel regular probability measure on K. We define a Laplacian on K as follows: For u ∈ F
and f ∈ Lp(µ), we say that u ∈ domLp ∆µ and ∆µu = f if

E(u, v) = −
∫
K

fv dµ for all v ∈ F with v|V0 = 0

We also have a Green’s operator G which inverts the Laplacian, and an associated Green’s function
with the form

g(x, y) =

∞∑
m=0

∑
|w|=m

rw
∑

p,q∈V1\V0

hp,q ψp(F
−1
w (x))ψq(F

−1
w (y)),

where rw = rw1
. . . rwn

.

RESULTS
Theorem: Suppose K is a p.c.f. self-similar set in (X, d) and supports a regular harmonic structure such
that the functions F−1j are Lipschitz and the harmonic splines ψp are α-Hölder continuous. Let Lw be
the Lipschitz constant of F−1w and define

Ψα(x, y) =

∞∑
m=0

∑
|w|=m

rwL
α
w1FwK(x)1FwK(y),

where 1FwK is the indicator function on FwK.
If u ∈ domLp ∆µ and Ψα(x, ·) ∈ Lp

′
(µ) uniformly in x for conjugate exponents p and p′, then u is α-

Hölder continuous with

|u(x)− u(x′)| ≤ C‖∆µu‖p sup
x∈K
‖Ψα(x, ·)‖p′d(x, x′)α.

Corollary: If K is as in the theorem above, and Ψα(x, y) is in L1(dµ(y)) uniformly with respect to x then
Laplacian eigenfunctions and the heat kernel are α-Hölder.
Method: Since G inverts the Laplacian, it follows that G∆µu = u. Thus, we show the α-Hölder continu-
ity of u by showing that G∆µu is α-Hölder continuous. The advantage of this method is that it allows
us to make use of the Green’s function.

CONCLUSION

Regarding our motivation, we were able to par-
tially answer our motivating question by proving
that Lp Laplacian functions of SGH are α-Hölder
continuous. However, we were able to go beyond
our initial goals by proving a result for a broad
class of p.c.f. self-similar sets beyond SGH, such
as the unit interval and the Sierpinski gasket.

Figure 2: Harmonic Sierpinski Gasket

FUTURE RESEARCH
We hope to extend our technique to prove Lips-
chitz continuity for Laplacian eigenfunctions on
SGH by applying G2 or G3 to ∆µ. We also
hope to generalize our current results to a class
of finitely ramified self-similar sets, or to general
self-similar sets expressed by harmonic coordi-
nates.
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