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Abstract

We consider a system of C?>valued ordinary

differential equations (OD.

F) that has solutions

which blow up in finite time. By adding a Brow-
nian stochastic term, we can stabilize the entire

system and produce a statistical equilibrium for

all solutions.

Introduction

The following C*valued system has solutions which

blow up in finite time:

where v € R™ and «, 8 € R. Recent results have
shown how an additive Brownian motion can stabi-
lize complex single—variable polynomial systems [2].
We have numerical results that suggest the same
results can be produced for our system. We analyt-
ically identified which initial conditions produce un-
stable solutions. We then verified numerically that
the addition of Brownian motion stabilized these for-

merly unstable solutions.

Z = —VZ+ QZW
<w:—uw+6zw
Z(O —zy € C
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Figure 1: Dynamics in

the Real Plane
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Background

A more thorough understanding of our system may be achieved by considering the following polynomial
system, |2|:
2y = anﬂzfﬂ +anz +---+ag, n>1

Like our multivariable system, this ODE has unstable trajectories that reach infinity in finite time. These
unstable trajectories can be stabilized by the addition of a Brownian motion term which gives us the following

—

stochastic differential equation (SDE):

(dz = (awlzf’+1 + apzy + - 4 ag) dt + od By

20 € C,

where B; is a complex Brownian stochastic term and o € R™. We would like to extend the methods developed
in |2] to show that our system can be stabilized by the addition of an appropriate Brownian motion and has

an invariant measure.

\

Objectives

« [dentify regions with unstable solutions in our C*valued system of equations

» Show what kind of noise is needed to stabilize our system

Analytical Observations Numerical Results

For our system, we can stabilize the explosive solu-
tions by adding Brownian motion in the imaginary

After decoupling z and w and making a change ot
coordinates, we get the following system of equa-

tions: z direction:
(- 2 2 2 2 ( _ :
g1 = —vyr+ By — v3) — (3 — yi)] dz = (—vz + azw) dt + idBy
. Yo = —VYs . dw; = (—vw + fzw) dt
Us = —vys + 28(y1ys — y2ya) 2(0) =2 €C
This system can be further simplified to: In the transformed coordinates, we have the follow-
(o R(2(4) — 22(4)) 200 _ 2,2 —2ut 1Ng:
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o —2vt _
g3 = —vya(t) + 2By1(H)ys(t) — 2B812(0)ya(0)e >, dy, = (—vyr + Bl(yr — v2) — (3 — y3))) dt
dy, = (—vys) dt
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Figure 2: Phase portrait for large ¢ (looks like 2 = 2% — 2)

Conclusion

We ran numerical simulations to verify our analyti-
cal results that this SDE must be stable. The ran-
dom noise was simulated by adding a normally dis-

tributed random variable to each time-step of the it-

erated Euler's method. This computation was done
on the same set of initial conditions to ensure that

the probability of a stable solution curve is near 1.
We tested a large range of initial conditions to en-

sure that this SDE is stable everywhere in the 4-
dimensional space, for all valid a, 3, and v.

Continued Research

» How can we generalize our results to systems in
higher dimensions and with higher order
nonlinearity (ie. cubic, quartic, etc.)?

« If v is negative, or if two distinct constants vy |, s
are used, how does the system differ and what
classes of noise will stabilize the system?
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