
Stabilization by Noise in C2–Valued Nonlinear Systems
Lance Ford, Derek Kielty, Rajeshwari Majumdar, Heather McCain, Dylan O’Connell

Department of Mathematics, University of Connecticut

Abstract

We consider a system of C2–valued ordinary
differential equations (ODE) that has solutions
which blow up in finite time. By adding a Brow-
nian stochastic term, we can stabilize the entire
system and produce a statistical equilibrium for
all solutions.

Introduction

The following C2–valued system has solutions which
blow up in finite time:



ż = −νz + αzw
ẇ = −νw + βzw
z(0) = z0 ∈ C
w(0) = w0 ∈ C,

where ν ∈ R+ and α, β ∈ R. Recent results have
shown how an additive Brownian motion can stabi-
lize complex single–variable polynomial systems [2].
We have numerical results that suggest the same
results can be produced for our system. We analyt-
ically identified which initial conditions produce un-
stable solutions. We then verified numerically that
the addition of Brownian motion stabilized these for-
merly unstable solutions.
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Figure 1: Dynamics in the Real Plane

Background

A more thorough understanding of our system may be achieved by considering the following polynomial
system, [2]:

żt = an+1z
n+1
t + anz

n
t + · · · + a0, n ≥ 1

Like our multivariable system, this ODE has unstable trajectories that reach infinity in finite time. These
unstable trajectories can be stabilized by the addition of a Brownian motion term which gives us the following
stochastic differential equation (SDE):dzt = (an+1z

n+1
t + anz

n
t + · · · + a0) dt + σdBt

z0 ∈ C,
where Bt is a complex Brownian stochastic term and σ ∈ R+. We would like to extend the methods developed
in [2] to show that our system can be stabilized by the addition of an appropriate Brownian motion and has
an invariant measure.

Objectives

• Identify regions with unstable solutions in our C2–valued system of equations
•Show what kind of noise is needed to stabilize our system

Analytical Observations

After decoupling ż and ẇ and making a change of
coordinates, we get the following system of equa-
tions: 

ẏ1 = −νy1 + β[(y2
1 − y2

2)− (y2
3 − y2

4)]
ẏ2 = −νy2
ẏ3 = −νy3 + 2β(y1y3 − y2y4)
ẏ4 = −νy4

This system can be further simplified to:{
ẏ1 = −νy1(t) + β(y2

1(t)− y2
3(t))− β(y2

2(0)− y2
4(0))e−2νt

ẏ3 = −νy3(t) + 2βy1(t)y3(t)− 2βy2(0)y4(0)e−2νt.

Figure 2: Phase portrait for large t (looks like ż = z2 − z)

Numerical Results

For our system, we can stabilize the explosive solu-
tions by adding Brownian motion in the imaginary
ż direction:

dzt = (−νz + αzw) dt + idBt
dwt = (−νw + βzw) dt
z(0) = z0 ∈ C
w(0) = w0 ∈ C,

In the transformed coordinates, we have the follow-
ing: 

dy1 = (−νy1 + β[(y2
1 − y2

2)− (y2
3 − y2

4)]) dt
dy2 = (−νy2) dt
dy3 = (−νy3 + 2β(y1y3 − y2y4)) dt + 1

2dBt
dy4 = (−νy4) dt + 1

2dBt.
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Figure 3: y3(0), y4(0) = 0,
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Figure 4: y3(0), y4(0) = 0,
without noise with noise

♦ = explosive solutions
∗ = non–explosive solutions

Conclusion

We ran numerical simulations to verify our analyti-
cal results that this SDE must be stable. The ran-
dom noise was simulated by adding a normally dis-
tributed random variable to each time-step of the it-
erated Euler’s method. This computation was done
on the same set of initial conditions to ensure that
the probability of a stable solution curve is near 1.
We tested a large range of initial conditions to en-
sure that this SDE is stable everywhere in the 4-
dimensional space, for all valid α, β, and ν.

Continued Research

•How can we generalize our results to systems in
higher dimensions and with higher order
nonlinearity (ie. cubic, quartic, etc.)?

• If ν is negative, or if two distinct constants ν1 , ν2
are used, how does the system differ and what
classes of noise will stabilize the system?
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