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Motivation

@ The study of maximal green sequences (MGS) is motivated by
string theory, in particular Donaldson-Thomas invariants and
the BPS spectrum.

@ The term maximal green sequences was first introduced by
Keller.

@ The definition of an MGS is purely combinatorial and involves
transformations of directed graphs known as quivers.



A quiver Q = (Qo, Q1) is a labeled and directed graph where
Qo ={1,2,...,n} is a set of vertices and @ is a set of arrows.
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Suppose Q is a quiver.
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Framed Quivers

Suppose Q is a quiver.

Construct the framed quiver @ = (Qo, Q1) by adding a set of
frozen vertices Q= {1',2',...,n"} and a set of arrows
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A non-frozen vertex i is called green if there are no arrows from
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A source is a vertex with all incident arrows coming out of it.
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A source is a vertex with all incident arrows coming out of it.
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Acyclic Quivers

A source is a vertex with all incident arrows coming out of it.

Ex. <« v-—
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Proposition

A minimal length MGS for an acyclic quiver @ can be obtained by
mutating at sources until each vertex has been mutated exactly
once. This procedure yields an MGS of minimal length n, where n
is the number of vertices in Q.
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Definitions

Definition 1
A vertex that is part of two 3-cycles is called a shared vertex.

Definition 2
A non-shared vertex that has an arrow to a shared vertex is called a leader.

Definition 3
A non-shared vertex that has an arrow to a leader is called a follower.

Follower Leader

ave

Leader ——— Shared —— Follower
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Example Quiver
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Main Theorem

The following procedure produces an MGS for quivers coming from
triangulations of disks consisting entirely of conjoined interior
triangles. Moreover, this procedure always consists of n + t
mutations, where n is the number of vertices in the quiver and t is

the number of 3-cycles.
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where Smg € Rpy. Now consider Q from this point on.
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Procedure

The procedure is the following:
1. Consider Q1 (or simply Q). Establish Ry, Ry, ..., Ry, as outlined
in Definitions 4 — 7. Label the vertices of Ry, as Vi, Vi, 5’"1'

where Smg € Rpy. Now consider Q from this point on.

2. Mutate in all Ly,.

3. Mutate in all Lp,.

4. Repeat step 3 for every region R;, i < m’.

5. Mutate the vertices of R, starting with an arbitrary vertex and
then moving in a cyclic order around R, until the vertex that was
first mutated is mutated again.

6. Mutate at Fmi and then at Lmi‘ Call this mutation sequence
Lo - Now consider the lower-numbered cycles connected to the

vertices of ng :



way to Rpy.

7. Repeat the mutations of step 6 for the cycles attached in such a
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Procedure

7. Repeat the mutations of step 6 for the cycles attached in such a
way to Rpy.

8. Repeat step 7 for each T;, attached to each T; (j > i), which
will result in a quiver with vertices that are all red.



O —<t —> O




L3, Lo, Ly,

averid

Loy — F3, — Fo, — Fyy

sl

Sa — Fay
41 1N
Vi, ﬁm 7 Fi, &) Ly,

> AP «Er (= = o



L3, Lo, Ly,

w) &) 4]

Lyy — F3, — o, — Fqy

Al

Sa, — Fa,
VAN
sz B)m Vm1 F12 &’ L12

Mutation Sequence:

> B> «E> «E>» = DA



L3, Lo, Ly,

w) &) 4]

Lyy — F3, — o, — Fqy

Al

Sa, — Fa,
VAN
sz B)m Vm1 F12 &’ L12

Mutation Sequence:

MLy, By,

> B> «E> «E>» = DA
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L3, Lo, Ly,

w) &) 4]

Lyy — F3, — o, — Fqy

Al
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sz B)m Vm1 F12 &’ L12

Mutation Sequence:

Hrs Hiy MLy, BLyy
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L3, Lo, Ly,

w) &) 4]

Lyy — F3, — o, — Fqy

Al

Sa, — Fa,
VAN
sz B)m Vm1 F12 &’ L12

Mutation Sequence:

Mgy HLs MLy MLy, HLyg

> B> «E> «E>» = DA



L3,

Lo,

Ly,
4
LR LA]
4

Ry

Sa, — Fa,

V, éVI l}

Fi, — Ly,
Mutation Sequence:

Sy HVimy Vg HSay HLay HLs, Pl HLy, Ly,

«O» «Fr « =>»

« =

DA



Example

L31 L21 L11

£ 14l 41

L41_’F31_)F21_)F11

sl

4

e, 3 Fa,
4 T
Vm2 g le F12 - L12

Mutation Sequence:

/’LL41 /’LF41 1u‘541 HVimy Vg N541 /’LL41 N’L31 iu’Lzl /‘LL12 MLll



Example

L31 L21 L11

£ 14l 41

L41_’F31_)F21_)F11

sl

4

e, 3 Fa,
4 T
Vm2 g le F12 - L12

Mutation Sequence:

//‘L31 N‘Fsl /J’L41 /LF41 ,LL541 HVimy Vg M541 /LL41 N’L31 H’Lzl NL12 /’l’Lll



Example

L31 L21 L11

£ 14l 41

L41_’F31_)F21_)F11

sl

541_fF41
4T
Vm2 g le F12 - L12

Mutation Sequence:

AU/L12 /"’Flz /j‘L31 N‘Fsl /J’L41 /LF41 ,LL541 IJ’VmQ /J/le M541 //‘L41 N’L31 H’Lzl ,LLL12 NLll



Example

L31 L21 L11

£ 14l 41

L41_’F31_)F21_)F11

sl

4

e, 3 Fa,
4 T
Vm2 g le F12 - L12

Mutation Sequence:

MLy Py MLy, Py, oL, s, MLy HFay Say Vg Vi, Sa) HLay HLs, Loy Ly, Ly,



Example
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Example

L31 L21 L11

£ 14l 41

L41_’F31_)F21_)F11

sl

4

e, 3 Fa,
4 T
Vm2 g le F12 - L12

Mutation Sequence:
MLy, HFyy Hip) Py Ly, Py, Fols, HFs, Felgy Py, HSgy Vi, HoViny [Sg, HLgy FLs) Hloy Ly, FoLy,

Notice that this MGS has length 19 =13+ 6 = n+ t, as desired.
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Preparatory Definitions for the General Procedure

A non-isolating vertex is a vertex in an acyclic subquiver with an
arrow from itself into a vertex in a 3-cycle. An isolating vertex is
a vertex in an acyclic subquiver with an arrow going into it from a
vertex in a 3-cycle.

A 3-cycle configuration is called isolated if each vertex in an
acyclic subquiver connected to a vertex in the 3-cycle configuration
by an arrow is an isolating vertex.

Call a fan containing both an isolating and non-isolating vertex, as

shown below, a connecting fan.
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The General Procedure
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1) Choose a 3-cycle configuration in Q which is not led into by a connecting
fan, and label it C.
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1) Choose a 3-cycle configuration in @ which is not led into by a connecting

fan, and label it Cy.

2) Isolate Cp via mutations at source vertices in adjacent acyclic subquivers.

3) Resolve Cy via the 3-cycle procedure.

4) Consider the subquiver Q1 composed of all remaining green vertices in Q.

5) Choose C; analogously to Cp, and repeat steps 2-4.
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The General Procedure

24
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1 2 3 5 23— 2«14 16— 25
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1) Choose a 3-cycle configuration in @ which is not led into by a connecting
fan, and label it Cp.

2) Isolate Cp via mutations at source vertices in adjacent acyclic subquivers.
3) Resolve Cp via the 3-cycle procedure.

4) Consider the subquiver @Q; composed of all remaining green vertices in Q.
5) Choose C; analogously to Cp, and repeat steps 2-4.

6) Continue until all 3-cycles are resolved.

7) Mutate any remaining green vertices via the procedure for acyclic quivers.



Thank you.



