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Introduction

Goals

» By considering a specific fractal, we hope to further

understanding of the Laplacian on fractals in general.



Introduction
Goals Cont.

» This will lead to a greater understanding of PDEs on

particularly of the heat equation and Brownian

fractals—

motion

» Qur approach is to study the spectrum of the Laplacian on a

fractal through a process called spectral decimation



Introduction
The 3N-Gaskets

» The specific class of fractals we consider are the 3N-Gaskets

» The 3N-Gaskets are a family of fractals formed by an iterated
function system of 3N contraction mappings

» The pervasive Sierpinski Triangle corresponds to N =1

° )




Introduction
The 3N-Gaskets cont.

» The Hexagasket

» The 12-gasket




Introduction
Set and Setting

» We consider the graph Laplacian with point—wise definition

1
Bof () =109 = Gor 1y (X,y);(cn) v



Introduction

Eigenfunction Plots

» We focus on eigenfunctions: functions f such that
Af(x) = zf(x) for all vertices x on our graph.

» Using this information, we can find eigenfunctions of a given
graph approximation.




Introduction

Eigenfunction Plots cont.

> We refer to the set of eigenvalues of a graph G as its
spectrum and write o(G)




The Spectrum

Description of Method

» Spectral decimation is the process of finding the eigenvalues
of the graph Laplacian on a given level of the fractal from the
eigenvalues on the next level

» The following items are required for spectral decimation:

1. R(z)—"The Spectral Decimation Function”

2. o(Mp) and o(M;)—sets of eigenvalues corresponding to Ag
and A; respectively

3. ¢(z) and o(D)—a rational function and a set of eigenvalues of
A, corresponding to Dirichlet boundary conditions used to find
an exceptional set of values, E(M;, Mp)



Spectral Decimation
o(Mo)

» Simply through assembling the matrix of the Laplacian for the
boundary vertices,




The Spectrum

Description of Method cont.

» Ideally, by applying R™1 n times to the values in o(Mp) we
would hope the entire spectrum of the graph Laplacian on any
level n of the fractal, o(M,), would be generated

» However, it's not so simple

1. Some values generated this way are not eigenvalues
2. Some eigenvalues cannot be generated this way

» It turns out we must also apply R~! to the values in o (M)
and E(Ml, Mo)



The Spectrum

Description of Method cont.

» Thus, we compute the multiplicities of these values using work
from a previous UConn REU and show that the sum of the
multiplicities equals the dimension of the eigenspace—the
geometric multiplicity

» Finally, with a limiting argument, we obtain the spectrum of
the Laplacian on the fractal, o(A), from o(M,)



Spectral Decimation
Calculation of R(z)

» The most elusive and most important tool in spectral
decimation is the “spectral decimation function” R(z)

» By the usual method, finding this function requires
manipulating the matrix of the Laplacian on the level n =1
approximation

» |n our case, this matrix increases in size as N increases so we
use an alternative, constructive approach



The Spectrum

Calculation of R(z)

» We choose an arbitrary junction
point and consider the adjacent
vertices at level n, assuming an
appropriate symmetry in our
eigenfunctions as shown

» We wish to relate the eigenvalues
on level n to those on level n+ 1
so we will need to evaluate A,
and A,

» For the latter, we need values for
the unlabeled vertices




The Spectrum

Calculation of R(z)

» Equivalently, we must find eigenfunctions that live on the
following graph




The Spectrum

Calculation of R(z)

» To do this, we entertain the problem of creating eigenfunctions
that live on the graph with the boundary conditions 1,0,0

» Then, taking linear combinations of these eigenfunctions will
yield eigenfunctions on the graph with boundary conditions
A BB




The Spectrum
Calculation of R(z)

» Simplifying the problem again, we find an eigenbasis for one
of the three sides of the graph containing two eigenfunctions

» A symmetric eigenfunction

cos((k — ¥1)9) ~ cos((k — N=1)arccos(1 — 2z))

fi(k) = =
(k) cos(¥19) cos(¥5L arccos(1 — 2z))




The Spectrum

Calculation of R(z)

» An anti-symmetric eigenfunction:

_sin((k — N=1)g) _sin((k — B=1)arccos(1 — 2z))

f(k) = =
2(k) sin(%ﬂ) sin(% arccos(1l — 2z))




The Spectrum

Calculation of R(z)

B
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» These eigenfunctions on
the edges can be glued \ /

together to give \ /
eigenfunctions on the full AATBOTOR JHrBero
graph with boundary \ /

\
values 1,0,0 %
/N
eigenfunctions for the \
graph with boundary ArBO+Y e\w(bw
values A, B, B by taking / \
linear combinations /

» Thus, we have

B

@



The Spectrum

Calculation of R(z)

» We evaluate the Laplacian at the vertex with value A on the
two consecutive levels n and n+ 1 and solve for z,1:

at+b+c+zpp1—1
b+ c

R(znt1) = zn =

» Our eigenfunctions provide values for a, b, and ¢ in terms of
Zn41



The Spectrum

The Spectral Decimation Function

v

Thus, we have the following form for R(z):

If N is even then

_ (z=1)vzUn-1 (V) (2Tn(1 — 22) + 2Un—1(1 — 22) + 1)
- v (V)

v

R(2)

v

If N is odd then

VZTn (VZ) @Ta(1 = 22) + 2Un-1(1 — 22) + 1)
Un-1(V2)

The spectral decimation function is rational

R(z) =

v

v

Tn(z) and Un(z) are Chebyshev polynomials of the first and
second kinds respectively



The Spectrum
The Poles of R(z)

» The poles of R(z) for N even are

1

Ck = {cos? <(m_N2)7T> :m=0,..,N—1}

» and for N odd,

mm

Ck = {cos? (—) :m=0,1..,N-—1}

N



The Spectrum
R(z) Plots—=N Even




The Spectrum
a(My)

» Consider the following graph and its extension:

> o(My) = (3 UES® g = 27 50 m=0,1,...,3N — 1}



The Spectrum
o(D)

» We consider graphs with Dirichlet boundary conditions:

» Symmetric Case:
1 1 1
zd = dfz(d+el+dr), ze = efZ(f+el+dr), zf = ffz(e+fl+fr)
» Skew Symmetric Case:

zd = df%(fd+e/+dr), ze = ef%(erelerr), zf = ff%(efflJrfr)



The Spectrum
o(2)

» If N is even then

(3-22)Tw (v2)

#=) = (Tw (V) = 2(z = 1)vzUn-1 (VZ)) (2T (1 - 22) + 2Un—1(1 — 22) + 1)

» If N is odd then

(3—22)Un_1 (vZ)
Un-1(Vz) = 2vzTn (vV2)) (2Tw(1 - 22) + 2Un-1(1 — 22) + 1)

¢(2) = (

» Like R(z), ¢(z) is rational



The Spectrum

¢(z) plots—N even

N=2 N =4
o e
1) v

N=38 N =16




The Spectrum

Main Results

» For N even,
o(My) = {0,3}uURm(a(M)—{1})
u (UR (U(D ({z: ¢(z) = 0}

U {z: Tw(vz) = 2(z — 1)vzUn-1(vz) = 0} )))
» For N odd,

o(Mn)

{ } UR (a(/vr)

(U (o0 (120121 =0)
m=0

C

C

{z: Un-1(V2) = 2v2Tn(V2) = 0} )))
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Main Results cont.
» For N even,

o(p) = { } (UR ({sm —) k=0,..3N - 1}

U {Z Tn \f) 2(z — 1)\[UN71([)—0}

C
/_/H
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» For N odd,

o(p) = {3} U ( G R,m({sinz(%) k=0,..,3N - 1}

(
{ <<'"— W) - 1N21}))

(-



