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Introduction
Goals

I By considering a specific fractal, we hope to further
understanding of the Laplacian on fractals in general.



Introduction
Goals Cont.

I This will lead to a greater understanding of PDEs on
fractals—particularly of the heat equation and Brownian
motion

I Our approach is to study the spectrum of the Laplacian on a
fractal through a process called spectral decimation



Introduction
The 3N-Gaskets

I The specific class of fractals we consider are the 3N-Gaskets

I The 3N-Gaskets are a family of fractals formed by an iterated
function system of 3N contraction mappings

I The pervasive Sierpinski Triangle corresponds to N = 1



Introduction
The 3N-Gaskets cont.

I The Hexagasket

I The 12-gasket



Introduction
Set and Setting

I We consider the graph Laplacian with point–wise definition

∆nf (x) = f (x)− 1

degn(x)

∑
(x ,y)∈E(Gn)

f (y)

.



Introduction
Eigenfunction Plots

I We focus on eigenfunctions: functions f such that
∆f (x) = zf (x) for all vertices x on our graph.

I Using this information, we can find eigenfunctions of a given
graph approximation.
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Introduction
Eigenfunction Plots cont.

I We refer to the set of eigenvalues of a graph G as its
spectrum and write σ(G )
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The Spectrum
Description of Method

I Spectral decimation is the process of finding the eigenvalues
of the graph Laplacian on a given level of the fractal from the
eigenvalues on the next level

I The following items are required for spectral decimation:

1. R(z)—“The Spectral Decimation Function”
2. σ(M0) and σ(M1)—sets of eigenvalues corresponding to ∆0

and ∆1 respectively
3. φ(z) and σ(D)—a rational function and a set of eigenvalues of

∆n corresponding to Dirichlet boundary conditions used to find
an exceptional set of values, E (M1,M0)



Spectral Decimation
σ(M0)

I Simply through assembling the matrix of the Laplacian for the
boundary vertices,  1 −1

2 −1
2

−1
2 1 −1

2
−1

2 −1
2 1


we have σ(M0) = {0, 32}

v1

v2 v3



The Spectrum
Description of Method cont.

I Ideally, by applying R−1 n times to the values in σ(M0) we
would hope the entire spectrum of the graph Laplacian on any
level n of the fractal, σ(Mn), would be generated

I However, it’s not so simple

1. Some values generated this way are not eigenvalues
2. Some eigenvalues cannot be generated this way

I It turns out we must also apply R−1 to the values in σ(M1)
and E (M1,M0)



The Spectrum
Description of Method cont.

I Thus, we compute the multiplicities of these values using work
from a previous UConn REU and show that the sum of the
multiplicities equals the dimension of the eigenspace—the
geometric multiplicity

I Finally, with a limiting argument, we obtain the spectrum of
the Laplacian on the fractal, σ(∆), from σ(Mn)



Spectral Decimation
Calculation of R(z)

I The most elusive and most important tool in spectral
decimation is the “spectral decimation function” R(z)

I By the usual method, finding this function requires
manipulating the matrix of the Laplacian on the level n = 1
approximation

I In our case, this matrix increases in size as N increases so we
use an alternative, constructive approach



The Spectrum
Calculation of R(z)

I We choose an arbitrary junction
point and consider the adjacent
vertices at level n, assuming an
appropriate symmetry in our
eigenfunctions as shown

I We wish to relate the eigenvalues
on level n to those on level n + 1
so we will need to evaluate ∆n

and ∆n+1

I For the latter, we need values for
the unlabeled vertices



The Spectrum
Calculation of R(z)

I Equivalently, we must find eigenfunctions that live on the
following graph
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The Spectrum
Calculation of R(z)

I To do this, we entertain the problem of creating eigenfunctions
that live on the graph with the boundary conditions 1, 0, 0

I Then, taking linear combinations of these eigenfunctions will
yield eigenfunctions on the graph with boundary conditions
A,B,B
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The Spectrum
Calculation of R(z)

I Simplifying the problem again, we find an eigenbasis for one
of the three sides of the graph containing two eigenfunctions

I A symmetric eigenfunction

f1(k) =
cos((k − N−1

2 )θ)

cos(N−12 θ)
=

cos((k − N−1
2 ) arccos(1− 2z))

cos(N−12 arccos(1− 2z))
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The Spectrum
Calculation of R(z)

I An anti-symmetric eigenfunction:

f2(k) = −sin((k − N−1
2 )θ)

sin(N−12 θ)
= −sin((k − N−1

2 ) arccos(1− 2z))

sin(N−12 arccos(1− 2z))
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The Spectrum
Calculation of R(z)

I These eigenfunctions on
the edges can be glued
together to give
eigenfunctions on the full
graph with boundary
values 1, 0, 0

I Thus, we have
eigenfunctions for the
graph with boundary
values A,B,B by taking
linear combinations

B B

aA + B Hb + cL aA + B Hb + cL

A

aA + B Hb + cL aA + B Hb + cL

B B



The Spectrum
Calculation of R(z)

I We evaluate the Laplacian at the vertex with value A on the
two consecutive levels n and n + 1 and solve for zn+1:

R(zn+1) = zn =
a + b + c + zn+1 − 1

b + c

I Our eigenfunctions provide values for a, b, and c in terms of
zn+1



The Spectrum
The Spectral Decimation Function

I Thus, we have the following form for R(z):
I If N is even then

R(z) =
(z − 1)

√
zUN−1

(√
z
)
(2TN(1− 2z) + 2UN−1(1− 2z) + 1)

TN

(√
z
)

I If N is odd then

R(z) =

√
zTN

(√
z
)
(2TN(1− 2z) + 2UN−1(1− 2z) + 1)

UN−1

(√
z
)

I The spectral decimation function is rational

I TN(z) and UN(z) are Chebyshev polynomials of the first and
second kinds respectively



The Spectrum
The Poles of R(z)

I The poles of R(z) for N even are

ζk = {cos2

(
(m − 1

2)π

N

)
: m = 0, ...,N − 1}

I and for N odd,

ζk = {cos2
(mπ

N

)
: m = 0, 1...,N − 1}



The Spectrum
R(z) Plots–N Even

N = 2 N = 4
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The Spectrum
σ(M1)

I Consider the following graph and its extension:

I σ(M1) = {32}
⋃{1−cos(θ)2 : θ = 2mπ

3N and m = 0, 1, ..., 3N − 1}



The Spectrum
σ(D)

I We consider graphs with Dirichlet boundary conditions:

�
��

T
TT

�
��

T
TT

�
��

T
TT

T
TT

�
��

T
TT

�
��

T
TT

�
��

T
TT

�
��

T
TT

�
��

T
TT

�
��

T
TT

�
��

T
TT

�
��

T
TT

�
��

T
TT

�
��

T
TT

�
��

T
TT

�
��

0 0

0

d d

e e

f f

1

I Symmetric Case:

zd = d − 1

4
(d + el + dr), ze = e− 1

4
(f + el + dr), zf = f − 1

4
(e + fl + fr)

I Skew Symmetric Case:

zd = d− 1

4
(−d +el +dr), ze = e− 1

4
(f +el +dr), zf = f − 1

4
(e−fl + fr)



The Spectrum
φ(z)

I If N is even then

φ(z) =
(3− 2z)TN

(√
z
)(

TN

(√
z
)
− 2(z − 1)

√
zUN−1

(√
z
))

(2TN(1− 2z) + 2UN−1(1− 2z) + 1)

I If N is odd then

φ(z) =
(3− 2z)UN−1

(√
z
)(

UN−1

(√
z
)
− 2
√
zTN

(√
z
))

(2TN(1− 2z) + 2UN−1(1− 2z) + 1)

I Like R(z), φ(z) is rational



The Spectrum
φ(z) plots–N even

N = 2 N = 4
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The Spectrum
Main Results

I For N even,

σ(Mn) =

{
0,

3

2

}
∪

n−1⋃
m=0

R−m

(
σ(M)− {1}

)
∪

( n−2⋃
m=0

R−m

(
σ(D)−

(
{z : φ(z) = 0}

∪
{

z : TN(
√

z)− 2(z − 1)
√

zUN−1(
√

z) = 0
} )))

I For N odd,

σ(Mn) =

{
0,

3

2

}
∪

n−1⋃
m=0

R−m

(
σ(M)

)
∪

( n−2⋃
m=0

R−m

(
σ(D)−

(
{z : φ(z) = 0}

∪
{

z : UN−1(
√

z)− 2
√

zTN(
√

z) = 0
} )))



The Spectrum
Main Results cont.

I For N even,

σ(∆) =

{
3

2

}
∪
( ∞⋃

m=0

R−m
({

sin2(
mπ

3N
) : k = 0, ..., 3N − 1

}
∪

{
z : TN(

√
z)− 2(z − 1)

√
zUN−1(

√
z) = 0

}
∪

{
cos2

(mπ
N

)
: m = 1, ...,

N

2

}))
I For N odd,

σ(∆) =

{
3

2

}
∪
( ∞⋃

m=0

R−m
({

sin2(
mπ

3N
) : k = 0, ..., 3N − 1

}
∪ {z : 2TN(1− 2z) + 2UN−1(1− 2z) + 1 = 0})

∪
{

cos2

((
m − 1

2

)
π

N

)
: m = 1, ...,

N − 1

2

}))


