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Simplexes and Simplicial Complices

A d-dimensional simplex is the convex hull of d+ 1 points in
general position.

A simplicial complex is a collection of simplices with a few
conditions about how simplices intersect.
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Simplicial complexes

A simplicial complex is a collection of simplexes with a few added
conditions.

Condition 1: If a simplicial complex K contains a simplex J, then
it contains all of the simplices J ′ ⊂ J
Condition 2: If two simplices intersect, they intersect on a
subsimplex.
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Simplicial complexes

These are valid simplicial complexes:

These are not:
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What is a barycenter?

A barycenter is the center of gravity of a simplex.

In algebraic terms, the barycenter of a simplex J is 1
d+1

∑
i vi

where vi are the vertices of J .
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What is barycentric subdivision?

Barycentric subdivision is defined recursively, but its formal
definition is a bit tedious.

Intuitively, we subdivide all of the faces of a simplex and connect
the subdivision of the faces to the barycenter of that simplex.
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3-D Barycentric Subdivision

This is what the barycentric subdivision of a tetrahedron (3-simplex)
looks like
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Repeated Barycentric Subdivision

We can repeatedly barycentrically divide a simplex K. We denote
the n-th barycentric subdivision as Kn.
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Adjacent simplices

We say that two d-simplexes in Kn are adjacent if they intersect
along a d− 1 simplex.
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Approximating graphs

Given Kn, we define a graph by assigning a vertex to each of
simplices and an edge if those vertexes are adjacent.
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Approximating Graphs (Cont.)

Here is the fourth level approximation:
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How to Determine Graphs

Number of vertices of this graphs grows as ((d+ 1)!)n where d is
the dimension of the original simplex.

So we use an alphabet to create words of length n to specify the
cells of Kn.
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Words and Alphabets
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Words and Alphabets

So we have a way of specifying vertices. How do we find the edges?

If we think of a good naming scheme, then given a word of length n
(ex. 0534134), we can find its neighbors. But more on this later...
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Contraction and Projection Mappings

We can perform contractions. This is the same as tacking on a
letter to the front of the word.

We also have a projection map from a cell to it’s parent cell by
deleting the last letter of the word.
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Strichartz Hexacarpet

Let the length of the words go to infinity with the same
connections for each of the finite length words, we obtain the
Strichartz Hexacarpet. But what does this look like?

G. J. H. Khan D. M. Raisingh (Universities of Somewhere and Elsewhere)The Strichartz Hexacarpet August 19, 2011 16 / 41



Permutohedron
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Permutohedron
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Permutohedron

Take all the permutations the vector (1, 2, . . . , n+ 1) ∈ Rn+1.

Its convex hull of these vectors is the permutohedron
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2nd Level approximation
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Defining the Laplacian, Eigenvalues, and Eigenfunctions

On a finite graph approximation, the Laplacian, ∆, is defined as

−∆nu(x) =
∑
x∼
n
y

(u(x)− u(y)) (1)

Using the Laplacian, we can then determine the eigenvalues and
eigenfunctions using the equation

−∆nu(x) = λu(x) (2)
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An Example on Determining the Laplacian

The Laplacian equation again −∆nu(x) =
∑

x∼
n
y (u(x)− u(y))


1 2 3 4

1 3 −1 −1 −1
2 −1 2 −1 0
3 −1 −1 3 −1
4 −1 0 −1 2

 2

1

3

4

This is the negative matrix of the Laplacian.

So we can see, finding the neighbors of each cell is very important.
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Working on the 3-Simplex

We have developed an algorithm to find the neighbors of any cell in a
arbitrary d-simplex. We will present the method on a tetrahedron so
that you see the intuition behind the algorithm.
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Defining the Naming Scheme

Definition

Any cell, A, in one Barycentric subdivision of a tetrahedron has one
letter word

A = (a1, a2, a3, a4)

with {a1, a2, a3, a4} = {0, 1, 2, 3}, each necessarily unique. We call
{0, 1, 2, 3} characters

a1 tells us the vertex A shares with its parent cell

a1a2 gives us the edge of the parent on which the second vertex is

∆a1a2a3 gives us the face of the parent on which the third vertex is

a4 is the unused character. It is the vertex opposite to the face of
K0 that A intersects
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An Example of Naming a Level 1 Subdivision: (0, 1, 2, 3)

1

2

3
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Naming Higher Level Subdivisions

Definition

The vertices of a cell A that results from a Barycentric subdivision are
labeled by looking at each vertex of K0 that has is named character ai
then finding the vertex of A that is closest to it using the Euclidean
metrix. This vertex of A is then named ai.

1

2

3

3
2

1

0
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Naming Higher Level Subdivisions

As we wish to reference cells in further Barycentric subdivisions,
Kn, the words become n× 4 matrices where each ith row,
(ai,1, ai,2, ai,3, ai,4), gives the level-i cell that contains A.

An example of this:

(
0 1 2 3
0 1 2 3

)
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An Example of Naming Higher Levels:

(
0 1 2 3
0 1 2 3

)
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The Number of Neighbors

A cell can have at most 4 neighbors because it has 4 faces. All cells
have 4 neighbors, but some have 3 neighbors if they are boundary cells
which are defined as:

Definition

A cell is an boundary cell if one of its faces intersects the face of K0
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Finding the First Three Neighbors

Corollary

Every cell in B1 is a boundary cell.

Proposition

Any cell A ∈ Kn, n ≥ 1, has three neighbors in it’s (n− 1) parent cell.
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Finding the First Three Neighbors

Lemma

Any cell A ∈ Kn has 3 inner neighbors in the same (n− 1)-cell
obtained by applying the transposition σi = (ani, an(i+1)) to the nth row
of A for i = 1, 2, 3.

Example: Let A =

(
0 1 2 3
0 1 2 3

)
Its 3 neighbors are:(

0 1 2 3
1 0 2 3

)
,

(
0 1 2 3
0 2 1 3

)
,

(
0 1 2 3
0 1 3 2

)
This transposition gives us the permutahedron.
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Finding the First Three Neighbors - Some Intuition

Let us consider (0, 1, 2, 3) which has neighbors (1, 0, 2, 3), (0, 2, 1, 3),
(0, 1, 3, 2)

1

2

3
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Finding the Fourth Neighbor

Proposition

If A 6∈ ∂Kn then A has a fourth neighbor in a j cell for some j ≤ n− 1.

Suppose that A, B ∈ Kn and A ∼ B (B is the fourth neighbor), then
A’s parent is touching B’s parent.
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Finding the Fourth Neighbor

Using these ideas, we can develop an algorithm to find the fourth
neighbor (details omitted)

(1) Find the parent cell that neighbors A.

(2) Find a homomorphism that converts the characters from A’s
coordinates to the neighbor’s coordinates

(3) Apply this homomorphism and obtain the neighbor
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The Heat Equation

The heat equation is
∂u

∂t
− c∆u(x, t) = 0 (3)

where t > 0 where ∆ is a Laplacian in the space variable x and c is a
positive constant.

For a level 3 subdivision of a tetrahedron we get the resistance is
ρ = 13.4274
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Eigenfunction Video - Level 4
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Eigenfunction Pictures - Level 4
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