Spectrum of the Magnetic Laplacian

Jessica Hyde, Jesse Moeller

University of Connecticut
Sierpinski Gasket
Sierpinski Gasket

Jessica Hyde, Jesse Moeller

Spectrum of the Magnetic Laplacian
Sierpinski Gasket
Sierpinski Gasket
Graph Approximations

And so on...

V_0, V_1, V_2
The Laplacian, Δ, holds information about the nature of a graph.

$$\Delta_n f(x) = \sum_{y \sim x} (f(x) - f(y))$$
Fractal Laplacian

\[\Delta = \lim_{m \to \infty} 5^m \Delta_m \]
We say $h(x)$ is a harmonic function on SG if $\Delta h(x) = 0$, $\forall x \in SG$.
Harmonic function h with fixed boundary conditions.
Boundary Conditions
A 1–form is the analogue of a vector field, and has values on [directed] edges. The form shown is the exterior derivative of the harmonic function on the previous slide. Its value on the edge from x to y is $h(x) - h(y)$.
An example of a 1--form that is not the exterior derivative of a harmonic function.
Harmonic Form
\(M_n^\alpha f(x) = \sum_{y \sim x} f(x) - e^{i\alpha A} f(y)\)

\[A(x, y) = h(x) - h(y)\]
Limit of Magnetic Laplacians

\[M^{\alpha A} = \lim_{m \to \infty} 5^m M_{m}^{\alpha A} \]
Spectrum of the Magnetic Operator

Research goals:

Jessica Hyde, Jesse Moeller

Spectrum of the Magnetic Laplacian
Research goals:

- Eigenfunctions
Research goals:
- Eigenfunctions
- Eigenvalues
We are able to find eigenfunctions of $M_{m}^{\alpha A}$. These solutions are found on the cut gasket, however. To bring these solutions back to SG we need to do a gluing similar to a gluing in a Calculus 1 course.
Say we want to join two functions f_1 and f_2 at point p where $p = l_1 \cap l_2$.
Gluing from Calc 1

\[f : l_1 \cup l_2 \rightarrow \mathbb{R} \]

- Continuous: \(f_1(p) = f_2(p) \)
- Differentiable: \(f_1(p) = f_2(p) \) and \(f'_1(p) = f'_2(p) \)
- Twice Differentiable: \(f_1(p) = f_2(p) \), \(f'_1(p) = f'_2(p) \), and \(f''_1(p) = f''_2(p) \)
- etc.
Suppose we have functions on subcells of SG that are to be joined at point $p = S_1 \cap S_2$.

\[
f_1 : S_1 \to \mathbb{R} \quad f_2 : S_2 \to \mathbb{R}
\]

\[
f : S_1 \cup S_2 \to \mathbb{R}
\]
Gluing Functions on Subcells of SG

Our joined function f will have a continuous Laplacian if

1. $f_1(p) = f_2(p)$
2. $\partial_n f_1(p) + \partial_n f_2(p) = 0$
3. $\Delta f_1(p) = \Delta f_2(p)$

Note: If f_1 and f_2 are eigenfunctions of Δ with the same eigenvalue then $1 \implies 3$. We then only need to check conditions 1 and 2.
Normal Derivative

\[\partial_n f(x) := \lim_{m \to \infty} \left(\frac{5}{3} \right)^m [2f(x) - f(y_i) - f(z_i)] \]
Suppose we are on a subcell of SG and the magnetic field is dA for a harmonic function A. Then our operator becomes

$$M_m^{\alpha A} = e^{i\alpha A} \Delta e^{-i\alpha A}.$$

It follows that if f is an eigenfunction of Δ on this subcell with eigenvalue λ then $g = e^{-iA}f$ is an eigenfunction of $M_m^{\alpha A}$ with the same eigenvalue λ.

We obtain eigenfunctions of $M_m^{\alpha A}$ on all of SG by gluing the eigenfunctions of subcells.
Infinite Ladder Sierpinski Fractal Fold
Infinite Ladder Sierpinski Fractal