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Introduction

On the classical Sierpinski gasket, there is a way to construct a Laplacian
differential operator and use it to do calculus. However, when the gasket is
embedded in R? in the usual way, the restriction of the calculus structure of
R? to the set does not give the same kind of structure.

Kigami has shown that there is a way to embed the gasket in R? such that
treating the image like a Riemannian submanifold recovers the correct
structure for doing analysis on the gasket (1993, 2008). We extend his results
to the Sierpinski gasket on IN vertices and an embedding in RN =1, The main
task is to prove that there are geodesics between pairs of boundary vertices,
the lengths of which are given by a Riemannian-type metric.

Construction of the Sierpinski Gasket SG N

m SG )y is the attractor of an iterated function system, i.e. there is a set of
functions H; such that

m Typically, H;(x) = %(m — pi) + pi, where p; are the vertices of an
(N — 1)-dimensional simplex (see left below).

m For the harmonic gasket, Ky (see below right),
H;(x) = T;(x — p;) + p;. If the origin is at the barycenter of the N

simplex, T is the linear map that contracts the simplex by a factor of N12

1

in the direction of p; and Nz I all orthogonal directions.

Harmonic embedding of SGy4

S G4 in regular coordinates
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Connecting the Boundary of K with Geodesic Curves

Let C' be the attractor of the iterated function system { H;, H5}, so

Theorem C' is a convex curve of finite length lying in a plane P.

Theorem All points in the projection of the harmonic Sierpinski gasket onto
the plane P lie on the concave side of C'.

Corollary The shortest path in the harmonic gasket between the fixed points of
H, and H, is C.
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Figure : Projection of SG4 (blue) onto the plane P, and the curve C' (red)

Properties of C' and Construction of de Rham Curves

m We prove C' is planar by showing that the plane P is a closed set and
invariant under the two maps H; and H5, and therefore contains the

attractor of the IFS {H,, H>}.

m Many other properties of C' follow from

Theorem C'is a de Rham curve with w = —2

2(N+2)

m De Rham curves are constucted by subdividing the sides of a regular n-gon,
Into three pieces with ratio w : 1 — 2w : w and constructing a new convex
polygon with 27 sides, whose vertices are those formed by the subdivision.

For example, Figure 2 shows a de Rham curve on a polygon with vertices a,

b and c:
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Figure : Example of a de Rham Curve up to two iterations

Theorem [Protasov '04] A de Rham curve is C* if w < 1/3, and is
differentiable at all but countably many pointsif 1/3 < w < 1/2.

Corollary C is C' if N = 2, 3 or 4, and its derivative has countably many
points of discontinuity if N > 5.

A Geodesic Distance on the Harmonic Sierpinski Gasket

mlet x and y be vertices of a cell in K. Since C' is the shortest curve
between p; and ps, the shortest path between & and vy is the image of C
along the corresponding edge of this cell.

mlf & is a vertex of one cell and y is a vertex of another cell, then the shortest
curve between them in K is a finite union of images of C' which make up
the edges of cells on the path from x to y. (See Figure 3.)

m By a limiting procedure, the shortest curve in Ky between arbitrary points
x and y is a countable union of images of C'. We let d.(x, y) denote the
length of this curve.

Figure : Shortest path from x to y in K (red)

Riemanian Metric Measure Structure and Heat Kernel

If & € C' is not a vertex, then there is a unique sequence wy, ws, ... and

r= lim H, oH, o0---0H, (Ky). Let T,,,(x) =TTy, Ty,
M —r OO
and define T, ()T (x)
m (T x
Z(x) = lim —

m—oo || Tn(2) |3
provided that Z(x) exists, where ||T},||gs is the Hilbert-Schmidt norm (i.e
| T ||%; g is the sum of the eigenvalues of T,,, T , counted with multiplicity).

Conjecture For all such @, Z (x) exists and is the projection onto the tangent
direction to C' at x.

This would prove that Z is like a Riemannian metric which gives the geodesic
distance d, in that if v: [0, 1] — C' is Lipschitz, then

¢(C) = / <A (1), Z(v(8)Y (£) > [V2dt,

where £(C') is the length of the curve C. Combined with results of Kigami
[Math. Ann.'08], this would imply that the heat kernel of the Kusuoka

Laplacian on K satisfies Gaussian estimates, i.e. there are constants
ci,C2, C3 and c4 such that

C1 ( d*(CB, y)2
exp | —cs
’U(B\/z(il), d*)) t

C3

v(B s(x,dy))

d.(z, y)2>

(xz,d,))exp (—04 ”

) < polts ) <

forany t € (0,1] and any x € K.
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