Geodesics and a Riemannian Metric on Harmonic Sierpinski Gaskets

Sara Chari, Joshua Frisch

Introduction

On the classical Sierpinski gasket, there is a way to construct a Laplacian differential operator and use it to do calculus. However, when the gasket is embedded in \mathbb{R}^2 in the usual way, the restriction of the calculus structure of \mathbb{R}^2 to the set does not give the same kind of structure.

Kigami has shown that there is a way to embed the gasket in \mathbb{R}^2 such that treating the image like a Riemannian submanifold recovers the correct structure for doing analysis on the gasket (1993, 2008). We extend his results to the Sierpinski gasket on N vertices and an embedding in \mathbb{R}^{N-1}. The main task is to prove that there are geodesics between pairs of boundary vertices, the lengths of which are given by a Riemannian-type metric.

Construction of the Sierpinski Gasket SG_N

SG_N is the attractor of an iterated function system, i.e. there is a set of functions H_i such that

$$\bigcup_{i=1}^N H_i(SG_N) = SG_N.$$

Typically, $H_i(x) = \frac{1}{3}(x - p_i) + p_i$, where p_i are the vertices of an $(N-1)$-dimensional simplex (see below).

For the harmonic gasket, SG_N (see below right),

$$H_i(x) = T_i(x - p_i) + p_i$$

when the origin is at the barycenter of the simplex, T_i is the linear map that contracts the simplex by a factor of $\frac{1}{N+2}$ in the direction of p_i and $\frac{1}{N+2}$ in all orthogonal directions.

Properties of C and Construction of de Rham Curves

- We prove C is planar by showing that the plane P is a closed set and invariant under the maps H_1 and H_2, and therefore contains the attractor of the IFS $\{H_1, H_2\}$.
- Many other properties of C follow from Theorem C is a de Rham curve with $\omega = \frac{N}{2(N+2)}$.
- De Rham curves are constructed by subdividing the sides of a regular n-gon, into three pieces with ratio $\omega = 1 - \omega$: ω and constructing a new convex polygon with $2n$ sides, whose vertices are those formed by the subdivision. For example, Figure 2 shows a de Rham curve on a polygon with vertices a, b and c.

Connecting the Boundary of K_N with Geodesic Curves

Let C be the attractor of the iterated function system $\{H_1, H_2\}$, so $C = H_1(C) \cup H_2(C)$.

Theorem C is a convex curve of finite length lying in a plane P.

Theorem All points in the projection of the harmonic Sierpinski gasket onto the plane P lie on the concave side of C.

Corollary The shortest path in the harmonic gasket between the fixed points of H_1 and H_2 is C.

A Geodesic Distance on the Harmonic Sierpinski Gasket

- Let x and y be vertices of a cell in K_N. Since C is the shortest curve between x_1 and y_1, the shortest path between x and y is the image of C along the corresponding edge of this cell.
- If x is a vertex of one cell and y is a vertex of another cell, then the shortest curve between them in K_N is a finite union of images of C which make up the edges of cells on the path from x to y (See Figure 3.)
- By a limiting procedure, the shortest curve in K_N between arbitrary points x and y is a countable union of images of C. We let $d_{s}(x, y)$ denote the length of this curve.

Figure: Shortest path from x to y in K (red)

Riemannian Metric Measure Structure and Heat Kernel

If $x \in C$ is not a vertex, then there is a unique sequence w_1, w_2, \ldots and $x = \lim_{m \to \infty} H_{w_1} \circ H_{w_2} \circ \cdots \circ H_{w_m}(K_N)$. Let $T_m(x) = T_{w_1} T_{w_2} \cdots T_{w_m}$ and define

$$Z(x) = \lim_{m \to \infty} \frac{\|T_m(x)\|_{FS}}{\|T_m(x)\|_{HS}}$$

provided that $Z(x)$ exists, where $\|T_m\|_{FS}$ is the Hilbert-Schmidt norm (i.e. $\sum \lambda_i$ is the sum of the eigenvalues of $T_m^* T_m$ counted with multiplicity).

Conjecture For all such x, $Z(x)$ exists and is the projection onto the tangent direction to C at x.

This would prove that Z is like a Riemannian metric which gives the geodesic distance d_s, in that if $\gamma : [0, 1] \to C$ is Lipschitz, then

$$\ell(C) = \int_0^1 \sqrt{\langle \gamma'(t), \gamma'(t) \rangle} \, dt$$

where $\ell(C)$ is the length of the curve C. Combined with results of Kigami [Math. Ann. '08], this would imply that the heat kernel of the Kusuoka Laplacian on K_N satisfies Gaussian estimates, i.e. there are constants c_1, c_2, c_3 and c_4 such that

$$\frac{c_1}{c_2} e^{-c_3 \frac{d_s(x,y)^2}{t}} \leq \frac{c_4}{c_2} e^{-c_3 \frac{d(x,y)^2}{t}} \leq \frac{c_4}{c_2} e^{-c_3 \frac{d(x,y)^2}{t}}$$

for any $t \in (0, 1]$ and any $x \in K_N$.

Acknowledgments

We would like to thank our advisor Prof. Luke Rogers, and our mentors Dan Kelleher, Jason Marsh and Gabe Feinkind. We also acknowledge the support of NSF grants DMS 1262929 and 0960022 and thank the UCONN Mathematics department for hosting the REU.