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Introduction

We consider the wave equation on the unit interval
with fractal measure, and use two numerical mod-
els to study wave speed and propagation distance.
The first approach uses a Fourier series of eigenfunc-
tions of the fractal Laplacian, while the second uses
a Markov chain to model the transmission and re-
flection of classical waves on an approximation of the
fractal. These models have complementary advan-
tages and limitations, and we conjecture that they
approximate the same fractal wave.

Fractal Mass on the Unit Interval

We construct a family of fractal measures depend-
ing on a parameter p ∈ (0, 1/2). Let q = 1− p.
•Divide the unit interval into three subintervals
with lengths r1 = p

1+p, r2 = q
1+p and r3 = r1.

•Distribute mass in proportions m1 = q
1+q,

m2 = p
1+q, m3 = m1.

•Repeat this procedure inside each interval,
iterating infinitely many times.

•The limiting fractal measure is called µ.
Physically, one can think of waves in the approxi-

mations to the fractal measure interval by imagining
a rope with thicker and thinner parts:

Fractal Wave Equation

We define a fractal Laplacian by setting∫
u′v′dx = −

∫
(∆µu)vdµ

for all v in the Sobolev space W 1,2.
This can be thought of as

∆µu = d

dµ

d

dx
u.

We study the fractal wave equation

∆µu = ∂2u

∂t2

with initial conditions u(x, 0) = δ(0), a Dirac mass
at x = 0, and ∂u

∂t(x, 0) = 0.
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The First Approach

Using the standard separation of variables ap-
proach, if fj(x) are eigenfunctions of ∆µ then

u(x, t) =
N∑
j=0

cjfj(x) cos
√
λjt

solves the wave equation with ∂u
∂t(x, 0) = 0 and

u(x, 0) = ∑N
j=0 cjfj(x). For a given N we choose cj

so u(x, 0) best approximates our Dirac mass δ(0).

Coding the Eigenfunctions

It is possible to compute exact eigenvalues and
eigenfunctions of ∆µ at endpoints of our decom-
position of the interval using spectral decimation.
By this method one can numerically simulate the
Fourier series solution for the wave equation. We
used Java code from [1] for this simulation. Here is
a snapshot of the wave created by the simulation:

Figure 1: Snapshot p = 0.2 and 38 subinterval

An advantage of this approach is that the eigen-
functions are those of the limiting fractal measure,
not an approximation. The main disadvantage is
that we can only approximate the initial Dirac mass
pulse.

Wave Propagation Speed

It is known that wave propagation speed over frac-
tal measures is infinite [2]. However, the lower bound
on wave amplitude from [2] is exponentially small,
so very little of the wave propagates at high speeds
We choose a threshold ε and study the propagation
speed of the ε-height wavefront. To do so we define
two functions.
Wave envelope:

U(x, t) = max
{
u(x, s) : s ≤ t

}
Propagation distance:

D(t, ε) = max
{
x : U(x, t) > ε

}

Wave Position Data

We studied many features of the functions U(x, t)
and D(t, ε), looking for decay properties of the for-
mer and at arrival times for the latter. Below is a
graph of D(t, 0.03) for different values of p.

Remark 1: We consider only for x ∈ [0, 1/2] to
avoid issues arising from using Neumann eigenfunc-
tions on [0, 1].
Remark 2: We have re-scaled the distance D such
that all intervals of our subdivision have the same
length 3−N to remove the dependence of the distance
structure on p.
Conjecture 1: D(t, ε) is the integral of a fractal
measure.
Conjecture 2: Each D(t, ε) is the same function,
but with a time scaling that depends upon p.

The Second Approach

We consider a finite approximation of the frac-
tal by taking a fixed level of the construction of the
measure. On each subinterval we then have a classi-
cal wave equation with wave speed depending on the
interval. At the interfaces between intervals, waves
will be transmitted and reflected in proportions de-
pending on the ratios of the wave speeds.

Conveniently, the time for a pulse to traverse
an interval is independent of the interval, so we
can study the transmissions and reflections with a
Markov chain. We call the transition probability for
the wave to move from an m1 to an m2 subinterval
α, and the transition probability to move from an
m2 to an m1 subinterval β:

Markov simulation

In terms of p and q, α = 2p and β = 2q. We
decompose the wave into left-moving (L) and right-
moving (R) parts. To obtain the wave profile at
time T +1, we apply the transition matrix Sn to the
wave profile at time T . When n = 1, the transition
matrix S1 reads

0 0 0 1 0 0
α 0 0 0 1− β 0
0 β 0 0 0 1− α

1− α 0 0 0 β 0
0 1− β 0 0 0 α
0 0 1 0 0 0


in the basis (R1, R2, R3, L1, L2, L3).

For general n, the matrix Sn has dimension 2 · 3n.
Below is a snapshot of the wave profile for n = 6
using the Markov chain approach:

Figure 2: Snapshot with p = 0.3 and 36 points

Here is a graph of D(t, ε) for different values of p
in the Markov chain simulation:

The main advantage of this approach is that the
initial condition is a genuine Dirac mass pulse. The
main disadvantage is that we work with a finite ap-
proximation of the fractal set. Accordingly, the two
approaches we have outlined are complementary.
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