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Motivation

The study of maximal green sequences (MGS) is motivated by
string theory, in particular Donaldson-Thomas invariants and
the BPS spectrum.

The term maximal green sequences was first introduced by
Keller.

The definition of an MGS is purely combinatorial and involves
transformations of directed graphs known as quivers.
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Quivers

A quiver Q = (Q0,Q1) is a labeled and directed graph where
Q0 = {1,2, ...,n} is a set of vertices and Q1 is a set of arrows.

We only consider quivers that satisfy the following conditions:

No loops

No oriented 2-cycles

Ex.
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Quiver Mutations

The mutation of a quiver Q at i ∈ Q0, denoted µi(Q), is a new
quiver formed by applying the following steps to Q:

1. For any pair of arrows h → i → j in Q, add a new arrow h → j .

2. Reverse all arrows incident to i .

3. Remove all oriented 2-cycles.
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Framed Quivers

Suppose Q is a quiver.

Construct the framed quiver Q̂ = (Q̂0, Q̂1) by adding a set of
frozen vertices Q ′0 = {1

′,2′, . . . ,n′} and a set of arrows
{i → i ′∣i ∈ Q0} to Q.

Ex. Suppose Q ∶ 1Ð→ 2

Q̂ ∶
1 2

1′ 2′
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Maximal Green Sequences

A non-frozen vertex i is called green if there are no arrows from
frozen vertices into i . A non-frozen vertex j is called red if there
are no arrows from j into frozen vertices.

A green sequence for a quiver Q is a sequence of mutations
µij . . . µi2µi1 of Q̂ at green vertices.

A maximal green sequence (MGS) for Q is a green sequence that
transforms Q̂ into a quiver where every non-frozen vertex is red.

Ex. Suppose Q ∶ 1Ð→ 2
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Triangulations of Polygons

Given a polygon P, a triangulation T of P is a maximal collection
of non-intersecting diagonals of P.

Arcs in a triangulation T correspond to vertices in the quiver QT ,
and angles between arcs correspond to paths in the quiver.
Ex.

T ∶

1
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4
QT ∶
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Triangulations of Polygons

Given a polygon P, a triangulation T of P is a maximal collection
of non-intersecting diagonals of P.

Arcs in a triangulation T correspond to vertices in the quiver QT ,
and angles between arcs correspond to paths in the quiver.

Ex.

T ∶

1
2

3

4
QT ∶

1 2 3 4



Triangulations of Polygons

Given a polygon P, a triangulation T of P is a maximal collection
of non-intersecting diagonals of P.

Arcs in a triangulation T correspond to vertices in the quiver QT ,
and angles between arcs correspond to paths in the quiver.
Ex.

T ∶

1
2

3

4
QT ∶

1 2 3 4



Acyclic Quivers

A source is a vertex with all incident arrows coming out of it.

Ex. ← v →
↓

Proposition

A minimal length MGS for an acyclic quiver Q can be obtained by
mutating at sources until each vertex has been mutated exactly
once. This procedure yields an MGS of minimal length n, where n
is the number of vertices in Q.
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Definitions

Definition 1

A vertex that is part of two 3-cycles is called a shared vertex.

Definition 2

A non-shared vertex that has an arrow to a shared vertex is called a leader.

Definition 3

A non-shared vertex that has an arrow to a leader is called a follower.
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Main Theorem

Theorem 1

The following procedure produces an MGS for quivers coming from
triangulations of disks consisting entirely of conjoined interior
triangles. Moreover, this procedure always consists of n + t
mutations, where n is the number of vertices in the quiver and t is
the number of 3-cycles.



Procedure

The procedure is the following:

1. Consider QT (or simply Q). Establish R1,R2, ...,Rm as outlined
in Definitions 4 − 7. Label the vertices of Rm as Vm1 ,Vm2 ,Sm′1 ,

where Sm′1 ∈ Rm′ . Now consider Q̂ from this point on.
2. Mutate in all L1i .
3. Mutate in all L2i .
4. Repeat step 3 for every region Ri , i ≤ m′.
5. Mutate the vertices of Rm starting with an arbitrary vertex and
then moving in a cyclic order around Rm, until the vertex that was
first mutated is mutated again.
6. Mutate at Fm′1 and then at Lm′1 . Call this mutation sequence
µm′1 . Now consider the lower-numbered cycles connected to the

vertices of Tm′1
.
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Procedure

7. Repeat the mutations of step 6 for the cycles attached in such a
way to Rm′ .

8. Repeat step 7 for each Tik attached to each Tjk (j > i), which
will result in a quiver with vertices that are all red.
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Vm2 Vm1

S41 F41

L41

F12 L12
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R4
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R3 R2 R1

Mutation Sequence:
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µL31
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µL41
µF41

µS41
µVm2
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Notice that this MGS has length 19 = 13 + 6 = n + t, as desired.
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Preparatory Definitions for the General Procedure

A non-isolating vertex is a vertex in an acyclic subquiver with an
arrow from itself into a vertex in a 3-cycle. An isolating vertex is
a vertex in an acyclic subquiver with an arrow going into it from a
vertex in a 3-cycle.

A 3-cycle configuration is called isolated if each vertex in an
acyclic subquiver connected to a vertex in the 3-cycle configuration
by an arrow is an isolating vertex.

Call a fan containing both an isolating and non-isolating vertex, as
shown below, a connecting fan.

●
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1) Choose a 3-cycle configuration in Q which is not led into by a connecting
fan, and label it C0.

2) Isolate C0 via mutations at source vertices in adjacent acyclic subquivers.
3) Resolve C0 via the 3-cycle procedure.
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Thank you.


