Maximal Green Sequences for Triangulations of Polygons

Minimal Length Maximal Green Sequences for Type \mathbb{A} Quivers

E. Cormier, P. Dillery, J. Resh, and J. Whelan

April 1, 2016

Motivation

- The study of maximal green sequences (MGS) is motivated by string theory, in particular Donaldson-Thomas invariants and the BPS spectrum.

Motivation

- The study of maximal green sequences (MGS) is motivated by string theory, in particular Donaldson-Thomas invariants and the BPS spectrum.
- The term maximal green sequences was first introduced by Keller.

Motivation

- The study of maximal green sequences (MGS) is motivated by string theory, in particular Donaldson-Thomas invariants and the BPS spectrum.
- The term maximal green sequences was first introduced by Keller.
- The definition of an MGS is purely combinatorial and involves transformations of directed graphs known as quivers.

Quivers

A quiver $Q=\left(Q_{0}, Q_{1}\right)$ is a labeled and directed graph where $Q_{0}=\{1,2, \ldots, n\}$ is a set of vertices and Q_{1} is a set of arrows.

Quivers

A quiver $Q=\left(Q_{0}, Q_{1}\right)$ is a labeled and directed graph where $Q_{0}=\{1,2, \ldots, n\}$ is a set of vertices and Q_{1} is a set of arrows.

We only consider quivers that satisfy the following conditions:

- No loops
- No oriented 2-cycles

Quivers

A quiver $Q=\left(Q_{0}, Q_{1}\right)$ is a labeled and directed graph where $Q_{0}=\{1,2, \ldots, n\}$ is a set of vertices and Q_{1} is a set of arrows.

We only consider quivers that satisfy the following conditions:

- No loops
- No oriented 2-cycles

Ex.

$1 \longrightarrow 2 \longrightarrow 3$

Quiver Mutations

The mutation of a quiver Q at $i \in Q_{0}$, denoted $\mu_{i}(Q)$, is a new quiver formed by applying the following steps to Q :

Quiver Mutations

The mutation of a quiver Q at $i \in Q_{0}$, denoted $\mu_{i}(Q)$, is a new quiver formed by applying the following steps to Q :

1. For any pair of arrows $h \rightarrow i \rightarrow j$ in Q, add a new arrow $h \rightarrow j$.

Quiver Mutations

The mutation of a quiver Q at $i \in Q_{0}$, denoted $\mu_{i}(Q)$, is a new quiver formed by applying the following steps to Q :

1. For any pair of arrows $h \rightarrow i \rightarrow j$ in Q, add a new arrow $h \rightarrow j$.
2. Reverse all arrows incident to i.

Quiver Mutations

The mutation of a quiver Q at $i \in Q_{0}$, denoted $\mu_{i}(Q)$, is a new quiver formed by applying the following steps to Q :

1. For any pair of arrows $h \rightarrow i \rightarrow j$ in Q, add a new arrow $h \rightarrow j$.
2. Reverse all arrows incident to i.
3. Remove all oriented 2-cycles.

Quiver Mutations

The mutation of a quiver Q at $i \in Q_{0}$, denoted $\mu_{i}(Q)$, is a new quiver formed by applying the following steps to Q :

1. For any pair of arrows $h \rightarrow i \rightarrow j$ in Q, add a new arrow $h \rightarrow j$.
2. Reverse all arrows incident to i.
3. Remove all oriented 2-cycles.

Ex.

Framed Quivers

Suppose Q is a quiver.

Framed Quivers

Suppose Q is a quiver.
Construct the framed quiver $\hat{Q}=\left(\hat{Q}_{0}, \hat{Q}_{1}\right)$ by adding a set of frozen vertices $Q_{0}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$ and a set of arrows
$\left\{i \rightarrow i^{\prime} \mid i \in Q_{0}\right\}$ to Q.

Framed Quivers

Suppose Q is a quiver.
Construct the framed quiver $\hat{Q}=\left(\hat{Q}_{0}, \hat{Q}_{1}\right)$ by adding a set of frozen vertices $Q_{0}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$ and a set of arrows
$\left\{i \rightarrow i^{\prime} \mid i \in Q_{0}\right\}$ to Q.

Ex. Suppose $Q: 1 \longrightarrow 2$

Maximal Green Sequences

A non-frozen vertex i is called green if there are no arrows from frozen vertices into i. A non-frozen vertex j is called red if there are no arrows from j into frozen vertices.

Maximal Green Sequences

A non-frozen vertex i is called green if there are no arrows from frozen vertices into i. A non-frozen vertex j is called red if there are no arrows from j into frozen vertices.

A green sequence for a quiver Q is a sequence of mutations $\mu_{i_{j}} \ldots \mu_{i_{2}} \mu_{i_{1}}$ of \hat{Q} at green vertices.

Maximal Green Sequences

A non-frozen vertex i is called green if there are no arrows from frozen vertices into i. A non-frozen vertex j is called red if there are no arrows from j into frozen vertices.

A green sequence for a quiver Q is a sequence of mutations $\mu_{i_{j}} \ldots \mu_{i_{2}} \mu_{i_{1}}$ of \hat{Q} at green vertices.
A maximal green sequence (MGS) for Q is a green sequence that transforms \hat{Q} into a quiver where every non-frozen vertex is red.

Maximal Green Sequences

A non-frozen vertex i is called green if there are no arrows from frozen vertices into i. A non-frozen vertex j is called red if there are no arrows from j into frozen vertices.

A green sequence for a quiver Q is a sequence of mutations $\mu_{i_{j}} \ldots \mu_{i_{2}} \mu_{i_{1}}$ of \hat{Q} at green vertices.
A maximal green sequence (MGS) for Q is a green sequence that transforms \hat{Q} into a quiver where every non-frozen vertex is red.

Ex. Suppose $Q: 1 \longrightarrow 2$

Triangulations of Polygons

Given a polygon P, a triangulation T of P is a maximal collection of non-intersecting diagonals of P.

Triangulations of Polygons

Given a polygon P, a triangulation T of P is a maximal collection of non-intersecting diagonals of P.

Arcs in a triangulation T correspond to vertices in the quiver Q_{T}, and angles between arcs correspond to paths in the quiver.

Triangulations of Polygons

Given a polygon P, a triangulation T of P is a maximal collection of non-intersecting diagonals of P.

Arcs in a triangulation T correspond to vertices in the quiver Q_{T}, and angles between arcs correspond to paths in the quiver.
Ex.

$$
Q_{T}: 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4
$$

Acyclic Quivers

A source is a vertex with all incident arrows coming out of it.

Acyclic Quivers

A source is a vertex with all incident arrows coming out of it.
Ex. $\leftarrow v \rightarrow$
\downarrow

Acyclic Quivers

A source is a vertex with all incident arrows coming out of it.
Ex. $\leftarrow v \rightarrow$
\downarrow

Proposition

A minimal length MGS for an acyclic quiver Q can be obtained by mutating at sources until each vertex has been mutated exactly once. This procedure yields an MGS of minimal length n, where n is the number of vertices in Q.

Definitions

Definition 1

A vertex that is part of two 3-cycles is called a shared vertex.

Definitions

Definition 1

A vertex that is part of two 3-cycles is called a shared vertex.

Definition 2

A non-shared vertex that has an arrow to a shared vertex is called a leader.

Definitions

Definition 1

A vertex that is part of two 3-cycles is called a shared vertex.

Definition 2

A non-shared vertex that has an arrow to a shared vertex is called a leader.

Definition 3

A non-shared vertex that has an arrow to a leader is called a follower.

Definitions

Definition 1

A vertex that is part of two 3-cycles is called a shared vertex.

Definition 2

A non-shared vertex that has an arrow to a shared vertex is called a leader.

Definition 3

A non-shared vertex that has an arrow to a leader is called a follower.

Labeling

Innermost Region

Outermost Region

Region 2

Region 2

Region 3

Region 3

Example Quiver

Main Theorem

Theorem 1

The following procedure produces an MGS for quivers coming from triangulations of disks consisting entirely of conjoined interior triangles. Moreover, this procedure always consists of $n+t$ mutations, where n is the number of vertices in the quiver and t is the number of 3-cycles.

Procedure

The procedure is the following:

Procedure

The procedure is the following:

1. Consider Q_{T} (or simply Q). Establish $R_{1}, R_{2}, \ldots, R_{m}$ as outlined in Definitions 4-7. Label the vertices of R_{m} as $V_{m_{1}}, V_{m_{2}}, S_{m_{1}^{\prime}}$, where $S_{m_{1}^{\prime}} \in R_{m^{\prime}}$. Now consider \hat{Q} from this point on.

Procedure

The procedure is the following:

1. Consider Q_{T} (or simply Q). Establish $R_{1}, R_{2}, \ldots, R_{m}$ as outlined in Definitions 4-7. Label the vertices of R_{m} as $V_{m_{1}}, V_{m_{2}}, S_{m_{1}^{\prime}}$, where $S_{m_{1}^{\prime}} \in R_{m^{\prime}}$. Now consider \hat{Q} from this point on.
2. Mutate in all L_{1}.

Procedure

The procedure is the following:

1. Consider Q_{T} (or simply Q). Establish $R_{1}, R_{2}, \ldots, R_{m}$ as outlined in Definitions 4-7. Label the vertices of R_{m} as $V_{m_{1}}, V_{m_{2}}, S_{m_{1}^{\prime}}$, where $S_{m_{1}^{\prime}} \in R_{m^{\prime}}$. Now consider \hat{Q} from this point on.
2. Mutate in all $L_{1_{i}}$.
3. Mutate in all $L_{2 i}$.

Procedure

The procedure is the following:

1. Consider Q_{T} (or simply Q). Establish $R_{1}, R_{2}, \ldots, R_{m}$ as outlined in Definitions 4-7. Label the vertices of R_{m} as $V_{m_{1}}, V_{m_{2}}, S_{m_{1}^{\prime}}$, where $S_{m_{1}^{\prime}} \in R_{m^{\prime}}$. Now consider \hat{Q} from this point on.
2. Mutate in all $L_{1_{i}}$.
3. Mutate in all $L_{2_{i}}$.
4. Repeat step 3 for every region $R_{i}, i \leq m^{\prime}$.

Procedure

The procedure is the following:

1. Consider Q_{T} (or simply Q). Establish $R_{1}, R_{2}, \ldots, R_{m}$ as outlined in Definitions 4-7. Label the vertices of R_{m} as $V_{m_{1}}, V_{m_{2}}, S_{m_{1}^{\prime}}$, where $S_{m_{1}^{\prime}} \in R_{m^{\prime}}$. Now consider \hat{Q} from this point on.
2. Mutate in all $L_{1_{i}}$.
3. Mutate in all L_{2}.
4. Repeat step 3 for every region $R_{i}, i \leq m^{\prime}$.
5. Mutate the vertices of R_{m} starting with an arbitrary vertex and then moving in a cyclic order around R_{m}, until the vertex that was first mutated is mutated again.

Procedure

The procedure is the following:

1. Consider Q_{T} (or simply Q). Establish $R_{1}, R_{2}, \ldots, R_{m}$ as outlined
in Definitions 4-7. Label the vertices of R_{m} as $V_{m_{1}}, V_{m_{2}}, S_{m_{1}^{\prime}}$, where $S_{m_{1}^{\prime}} \in R_{m^{\prime}}$. Now consider \hat{Q} from this point on.
2. Mutate in all $L_{1_{i}}$.
3. Mutate in all $L_{2_{i}}$.
4. Repeat step 3 for every region $R_{i}, i \leq m^{\prime}$.
5. Mutate the vertices of R_{m} starting with an arbitrary vertex and then moving in a cyclic order around R_{m}, until the vertex that was first mutated is mutated again.
6. Mutate at $F_{m_{1}^{\prime}}$ and then at $L_{m_{1}^{\prime}}$. Call this mutation sequence $\mu_{m_{1}^{\prime}}$. Now consider the lower-numbered cycles connected to the $\overline{\text { vertices of }} T_{m_{1}^{\prime}}$.

Procedure

7. Repeat the mutations of step 6 for the cycles attached in such a way to $R_{m^{\prime}}$.

Procedure

7. Repeat the mutations of step 6 for the cycles attached in such a way to $R_{m^{\prime}}$.
8. Repeat step 7 for each $T_{i_{k}}$ attached to each $T_{j_{k}}(j>i)$, which will result in a quiver with vertices that are all red.

Example

Example

Example

Mutation Sequence:

Example

Mutation Sequence:

Example

$$
\begin{aligned}
& \xrightarrow[L_{4_{1}}]{L_{R_{3}}}{ }_{F_{3_{1}}}^{L_{3_{1}}}{ }_{R_{R_{2}}}^{L_{2_{1}}} F_{2_{1}} \xrightarrow{L_{R_{1}}}{ }_{R_{1}}^{L_{1_{1}}} \\
& S_{4_{1}} \xrightarrow{{ }_{R_{4}} \uparrow F_{4_{1}}} \\
& V_{m_{2}} \xrightarrow{\swarrow_{R_{m}}} V_{m_{1}} \\
& \underset{F_{1_{2}} \xrightarrow{R_{1}} L_{1_{2}}}{ }
\end{aligned}
$$

Mutation Sequence:
$\mu_{L_{2_{1}}} \mu_{L_{1_{2}}} \mu_{L_{1_{1}}}$

Example

Mutation Sequence:
$\mu_{L_{3_{1}}} \mu_{L_{2_{1}}} \mu_{L_{1_{2}}} \mu_{L_{1_{1}}}$

Example

Mutation Sequence:

$$
\mu_{L_{4_{1}}} \mu_{L_{3_{1}}} \mu_{L_{2_{1}}} \mu_{L_{1_{2}}} \mu_{L_{1_{1}}}
$$

Example

Mutation Sequence:
$\mu_{S_{4_{1}}} \mu_{V_{m_{2}}} \mu_{V_{m_{1}}} \mu_{S_{4_{1}}} \mu_{L_{4_{1}}} \mu_{L_{3_{1}}} \mu_{L_{2_{1}}} \mu_{L_{1_{2}}} \mu_{L_{1_{1}}}$

Example

Mutation Sequence:

$$
\mu_{L_{4_{1}}} \mu_{F_{4_{1}}} \mu_{S_{4_{1}}} \mu_{V_{m_{2}}} \mu_{V_{m_{1}}} \mu_{S_{4_{1}}} \mu_{L_{4_{1}}} \mu_{L_{3_{1}}} \mu_{L_{2_{1}}} \mu_{L_{1_{2}}} \mu_{L_{1_{1}}}
$$

Example

Mutation Sequence:

$$
\mu_{L_{3_{1}}} \mu_{F_{3_{1}}} \mu_{L_{4_{1}}} \mu_{F_{4_{1}}} \mu_{S_{4_{1}}} \mu_{V_{m_{2}}} \mu_{V_{m_{1}}} \mu_{S_{4_{1}}} \mu_{L_{4_{1}}} \mu_{L_{3_{1}}} \mu_{L_{2_{1}}} \mu_{L_{1_{2}}} \mu_{L_{1_{1}}}
$$

Example

Mutation Sequence:

$$
\mu_{L_{1_{2}}} \mu_{F_{1_{2}}} \mu_{L_{3_{1}}} \mu_{F_{3_{1}}} \mu_{L_{4_{1}}} \mu_{F_{4_{1}}} \mu_{S_{4_{1}}} \mu_{V_{m_{2}}} \mu_{V_{m_{1}}} \mu_{S_{4_{1}}} \mu_{L_{4_{1}}} \mu_{L_{3_{1}}} \mu_{L_{2_{1}}} \mu_{L_{1_{2}}} \mu_{L_{1_{1}}}
$$

Example

Mutation Sequence:

$$
\mu_{L_{2_{1}}} \mu_{F_{2_{1}}} \mu_{L_{1_{2}}} \mu_{F_{1_{2}}} \mu_{L_{3_{1}}} \mu_{F_{3_{1}}} \mu_{L_{4_{1}}} \mu_{F_{4_{1}}} \mu_{S_{4_{1}}} \mu_{V_{m_{2}}} \mu_{V_{m_{1}}} \mu_{S_{4_{1}}} \mu_{L_{4_{1}}} \mu_{L_{3_{1}}} \mu_{L_{2_{1}}} \mu_{L_{1_{2}}} \mu_{L_{1_{1}}}
$$

Example

Mutation Sequence:
$\mu_{L_{1_{1}}} \mu_{F_{1_{1}}} \mu_{L_{2_{1}}} \mu_{F_{2_{1}}} \mu_{L_{1_{2}}} \mu_{F_{1_{2}}} \mu_{L_{3_{1}}} \mu_{F_{3_{1}}} \mu_{L_{4_{1}}} \mu_{F_{4_{1}}} \mu_{S_{4_{1}}} \mu_{V_{m_{2}}} \mu_{V_{m_{1}}} \mu_{S_{4_{1}}} \mu_{L_{4_{1}}} \mu_{L_{3_{1}}} \mu_{L_{2_{1}}} \mu_{L_{1_{2}}} \mu_{L_{1_{1}}}$

Example

Mutation Sequence:
$\mu_{L_{1_{1}}} \mu_{F_{1_{1}}} \mu_{L_{2_{1}}} \mu_{F_{2_{1}}} \mu_{L_{1_{2}}} \mu_{F_{1_{2}}} \mu_{L_{3_{1}}} \mu_{F_{3_{1}}} \mu_{L_{4_{1}}} \mu_{F_{4_{1}}} \mu_{S_{4_{1}}} \mu_{V_{m_{2}}} \mu_{V_{m_{1}}} \mu_{S_{4_{1}}} \mu_{L_{4_{1}}} \mu_{L_{3_{1}}} \mu_{L_{2_{1}}} \mu_{L_{1_{2}}} \mu_{L_{1_{1}}}$
Notice that this MGS has length $19=13+6=n+t$, as desired.

Preparatory Definitions for the General Procedure

A non-isolating vertex is a vertex in an acyclic subquiver with an arrow from itself into a vertex in a 3-cycle. An isolating vertex is a vertex in an acyclic subquiver with an arrow going into it from a vertex in a 3-cycle.

Preparatory Definitions for the General Procedure

A non-isolating vertex is a vertex in an acyclic subquiver with an arrow from itself into a vertex in a 3-cycle. An isolating vertex is a vertex in an acyclic subquiver with an arrow going into it from a vertex in a 3-cycle.

A 3-cycle configuration is called isolated if each vertex in an acyclic subquiver connected to a vertex in the 3-cycle configuration by an arrow is an isolating vertex.

Preparatory Definitions for the General Procedure

A non-isolating vertex is a vertex in an acyclic subquiver with an arrow from itself into a vertex in a 3-cycle. An isolating vertex is a vertex in an acyclic subquiver with an arrow going into it from a vertex in a 3-cycle.

A 3-cycle configuration is called isolated if each vertex in an acyclic subquiver connected to a vertex in the 3-cycle configuration by an arrow is an isolating vertex.

Call a fan containing both an isolating and non-isolating vertex, as shown below, a connecting fan.

The General Procedure

1) Choose a 3-cycle configuration in Q which is not led into by a connecting fan, and label it C_{0}.

The General Procedure

1) Choose a 3-cycle configuration in Q which is not led into by a connecting fan, and label it C_{0}.
2) Isolate C_{0} via mutations at source vertices in adjacent acyclic subquivers.

The General Procedure

1) Choose a 3-cycle configuration in Q which is not led into by a connecting fan, and label it C_{0}.
2) Isolate C_{0} via mutations at source vertices in adjacent acyclic subquivers.
3) Resolve C_{0} via the 3-cycle procedure.

The General Procedure

1) Choose a 3-cycle configuration in Q which is not led into by a connecting fan, and label it C_{0}.
2) Isolate C_{0} via mutations at source vertices in adjacent acyclic subquivers.
3) Resolve C_{0} via the 3-cycle procedure.
4) Consider the subquiver Q_{1} composed of all remaining green vertices in Q.

The General Procedure

1) Choose a 3-cycle configuration in Q which is not led into by a connecting fan, and label it C_{0}.
2) Isolate C_{0} via mutations at source vertices in adjacent acyclic subquivers.
3) Resolve C_{0} via the 3-cycle procedure.
4) Consider the subquiver Q_{1} composed of all remaining green vertices in Q.
5) Choose C_{1} analogously to C_{0}, and repeat steps 2-4.

The General Procedure

1) Choose a 3-cycle configuration in Q which is not led into by a connecting fan, and label it C_{0}.
2) Isolate C_{0} via mutations at source vertices in adjacent acyclic subquivers.
3) Resolve C_{0} via the 3-cycle procedure.
4) Consider the subquiver Q_{1} composed of all remaining green vertices in Q.
5) Choose C_{1} analogously to C_{0}, and repeat steps 2-4.
6) Continue until all 3-cycles are resolved.

The General Procedure

1) Choose a 3-cycle configuration in Q which is not led into by a connecting fan, and label it C_{0}.
2) Isolate C_{0} via mutations at source vertices in adjacent acyclic subquivers.
3) Resolve C_{0} via the 3-cycle procedure.
4) Consider the subquiver Q_{1} composed of all remaining green vertices in Q.
5) Choose C_{1} analogously to C_{0}, and repeat steps 2-4.
6) Continue until all 3-cycles are resolved.
7) Mutate any remaining green vertices via the procedure for acyclic quivers.

Thank you.

