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Infinite Ladder Circuit

zL = iωL

zC =
1

iωC
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Characteristic Impedance
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Characteristic Impedance

z =

(
1
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)−1
+ (iωL)

z =
1

2C

(
iωLC +

√
4LC − ω2L2C 2

)

Filter Condition: ω2LC < 4.
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Finite Approximations

Yoon 2007

Let zN be the characteristic impedance of the circuit at the Nth

stage.
Then lim

N→∞
zN does not exist.
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Finite Approximations

Yoon 2007

Let zN,ε be the characteristic impedance at the Nth stage of
construction of the infinite ladder with small real ε > 0 added to
each impedance. Then,

lim
ε→0+

lim
N→∞

zN,ε = z =
1

2C

(
iωLC +

√
4LC − ω2L2C 2

)
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Sierpinski Gasket Circuit Construction

SG circuit level 1 SG circuit level 2
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Sierpinski Gasket Circuit Construction

SG circuit level 2
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Sierpinski Gasket Circuit Construction
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Characteristic Impedance

Theorem 1

If zL = iωL and zC = 1/(iωC ), where ω is the AC frequency, then
the SG ladder has characteristic impedance

z =
1

10ωC

(
2iω2LC + 9i +

√
144ω2LC − 4(ω2LC )2 − 81

)
,

and is a filter when

9(4−
√

15) < 2ω2LC < 9(4 +
√

15).
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Finite Approximations

Theorem 2

For finite approximations of the SG ladder,

i.) lim
N→∞

zN does not exist.

ii.) zN,ε converges for any ε > 0 and

lim
ε→0+

lim
N→∞

zN,ε = z ,

the characteristic impedance of the SG ladder.
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Harmonic Functions and Extension Matrices

If potentials f (pj), j = 0, 1, 2, are assigned at the outer vertices of
the circuit, then energy minimization gives a unique extension to a
function f defined on all vertices. This function is harmonic,
meaning that for all x,

∆f (x) =
∑
x∼y

1

zxy

(
f (x)− f (y)

)
= 0.

If applied to all points on one level of the graph, this sets up a
system of linear equations that allows f to be represented by a
product of harmonic extension matrices.
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Harmonic Functions and Extension Matrices

Theorem

The matrix A, below, takes the potentials at the outer points of a
SG ladder circuit to those at three outer points of the inner
triangle element. Using self-similarity, the potentials at all other
points can be determined by iteratively applying A and the known
1
5 -

2
5 rule for the Sierpinski Gasket.

A =
1

9zC + 5z

3zC + 5z 3zC 3zC
3zC 3zC + 5z 3zC
3zC 3zC 3zC + 5z

 .
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Harmonic Functions and Extension Matrices
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Harmonic Functions and Extension Matrices

Definition

The 1
5 -25 rule states that the matrices A0, A1, and A2 send the

potentials at the outer corners of the level 2 Sierpinski gasket,
f (qj), j = 0, 1, 2, to the potentials at the corners of the top, left,
and right cells respectively.

A0 =

1 0 0
2
5

2
5

1
5

2
5

1
5

2
5

 A1 =

2
5

2
5

1
5

0 1 0
1
5

2
5

2
5

 A2 =

2
5

1
5

2
5

1
5

2
5

2
5

0 0 1


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Complex Power Dissipation

P = IV

If the potentials at all points in the circuit are stored in a vector Q,
the complex power dissipation is defined by

P = (EQ)T (CEQ) = QTETCEQ

• E is a vertex-edge transference matrix sending the potentials at
vertices to the potential differences across edges.
• C is a diagonal conductance matrix sending edge voltage to
edge current according to Ohm’s law.
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Complex Power Dissipation

Theorem

The operator D = ETCE that sends potential to total power
dissipation on each circuit is invariant under network reduction
upon taking the Schur complement.

For the SG circuit with characteristic impedance z , the simplest
power dissipation operator is

D =
1

z

 2 −1 −1
−1 2 −1
−1 −1 2


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