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Graph Approximations

V0 V1 V2

And so on...
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Graph Laplacian

The Laplacian, ∆, holds information about the nature of a graph.

∆nf (x) =
∑
y∼x

(f (x)− f (y))
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Fractal Laplacian

∆ = lim
m→∞

5m∆m
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Harmonic Functions

We say h(x) is a harmonic function on SG if ∆h(x) = 0,∀x ∈ SG
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Boundary Conditions

Harmonic function h with fixed boundary conditions.
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Harmonic Form

A 1−form is the analogue of a vector field, and has values on
[directed] edges. The form shown is the exterior derivative of the
harmonic function on the previous slide. Its value on the edge from
x to y is h(x)− h(y).
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Harmonic Form

An example of a 1−form that is not the exterior derivative of a
harmonic function.
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Harmonic Form
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Magnetic Laplacian

Mα
n f (x) =

∑
y∼x

f (x)−e iαAf (y)

A(x , y) = h(x)− h(y)
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Limit of Magnetic Laplacians

MαA = lim
m→∞

5mMαA
m
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Spectrum of the Magnetic Operator

Research goals:

Eigenfunctions
Eigenvalues
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Gluing

We are able to find eigenfunctions of MαA
m . These solutions are

found on the cut gasket, however. To bring these solutions back to
SG we need to do a gluing similar to a gluing in a Calculus 1
course.
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Gluing from Calc 1

f1 : I1 → R f2 : I2 → R

Say we want to join two functions f1 and f2 at point p where
p = I1 ∩ I2.
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Gluing from Calc 1

f : I1 ∪ I2 → R

Continuous: f1(p) = f2(p)
Differentiable: f1(p) = f2(p) and f ′1(p) = f ′2(p)
Twice Differentiable: f1(p) = f2(p), f ′1(p) = f ′2(p), and
f ′′1 (p) = f ′′2 (p)
etc.
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Gluing Functions on Subcells of SG

Suppose we have functions on subcells of SG that are to be joined
at point p = S1 ∩ S2.

S1 S2

f1 : S1 → R f2 : S2 → R

f : S1 ∪ S2 → R
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Gluing Functions on Subcells of SG

f : S1 ∪ S2 → R

Our joined function f will have a continuous Laplacian if

1 f1(p) = f2(p)
2 ∂nf1(p) + ∂nf2(p) = 0
3 ∆f1(p) = ∆f2(p)

Note: If f1 and f2 are eigenfunctions of ∆ with the same eigenvalue
then 1 =⇒ 3. We then only need to check conditions 1 and 2.
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Normal Derivative

∂nf (x) := lim
m→∞

(
5

3

)m

[2f (x)− f (yi )− f (zi )]
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Gluing Functions on Subcells of SG

Suppose we are on a subcell of SG and the magnetic field is dA for
a harmonic function A. Then our operator becomes

MαA
m = e iαA∆e−iαA.

It follows that if f is an eigenfunction of ∆ on this subcell with
eigenvalue λ then g = e−iAf is an eigenfunction of MαA

m with the
same eigenvalue λ.

We obtain eigenfunctions of MαA
m on all of SG by gluing the

eigenfunctions of subcells.
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